US012346399B2

a2y United States Patent (10) Patent No.: US 12,346,399 B2
Hernandez-Mondragon 45) Date of Patent: Jul. 1, 2025

(54) METHOD AND SYSTEM FOR A WEB (56) References Cited
INTERACTION WITH OBJECTS AND

REMOTE DISPLAY TECHNOLOGIES U.S. PATENT DOCUMENTS

_ _ 2012/0169593 Al* 7/2012 Mak GO6F 3/04883
(71) Applicant: Edwin A. Hernandez-Mondragon, 345/157
Boca Raton, FL (US) 2014/0011584 Al 1/2014 Shin et al.
2015/0382066 Al 12/2015 Heeter et al.
(72) Inventor: Edwin A. Hernandez-Mondragon, 2016/0034058 Al 2/2016 Stauber et al.
2021/0133274 Al* 5/2021 Chu GO6F 16/9577
Boca Raton, FL (US) 2024/0012930 AL* 1/2024 Boyd .o HO4L 51/216
2024/0155033 Al1* 52024 Wel ..coooviiviiininnn., A63F 13/22

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by O days.

KR 102344580 B1 12/2021

(21) Appl. No.: 18/622,249
OTHER PUBLICATIONS

(22) Filed: Mar. 29, 2024 | |
Igbal, Muhammad Zahid and Campbell, Abraham G .; Potential

(65) Prior Publication Data Security and Privacy Issues in Zero Ul Touchless Technology, Int.
Cybersecur. Law Rev (2022), Apr. 19, 2022, pp. 1-8.
US 2024/0330392 Al Oct. 3, 2024 https://www.qararairways.com/tradeportal/en/QR-NDC html; Intro-

ducing Oryx Connect, 7 pages.
PCT ISR and Written Opinion for corresponding PCT Patent

o Application International Serial No. PCT/US2024/022310, Dec. 20,
Related U.S. Application Data 2024, 10 pgs.

(60) Provisional application No. 63/456,018, filed on Mar.

M o~g :
31, 2023. cited by examiner

Primary Examiner — Cao H Nguyen

(1) Int. Cl. (74) Attorney, Agent, or Firm — Dickinson Wright PLLC

GO6I 16/957 (2019.01)
GO6F 3/0488 (2022.01) (57) ABRSTRACT
GO6F 16/955 2019.01
(52) U.S. Cl () This disclosure covers a technological advanced for a dis-
cPC GOGF 16/9577 (2019.01); GOGF 3/0488 tributed operating system where mobile devices are control-

lers and smart televisions become displays for a system

(2013.01); GOGF 16/9554 (2019.01) where messaging, streaming, and computation are stored 1n

(38) Field of Classification Search the cloud or a decentralized operating system.
CPC . GO6F 16/9577;, GO6F 3/0488; GO6F 16/9534
See application file for complete search history. 18 Claims, 30 Drawing Sheets
102 Davice Connsot Platiom :
3 \
1?6\55\%: [o | i~ '] ., i.
SNhwebiniegraion coded | | {webinegretioncode | Mwebinfegralioncode|| |{webinlegraoncode}| {1 webinlegraioncode]
: PR e | > E e Seamie]
: ML : - G0 e it E EOL 0N PRI :
: NFT L 1 Joar Bel TS E ViseoCon bopicr :
| Port 80, 443 | Portgl, 443 “or Bl 445 | Por 3l 442 Port 80, 443 5
- | Fort 8000 t Port 800 Part G000 | Port80i0 Port §008 :_
| nftmeviaart P iolaxpar con MEiRgAMES Lo | | Zoommevia.y - TEviE ;
A A A A
: 12 130 143 154
U et tegraton 062 ~_| | et e recration e’
W B RITIANE S| | <sorpt sro=wed integration coder....
; <iml L >
} ' {Iﬂ b
s |1 TR | .
. | T S P
| ,I:TTF {Nodedd |Hier
o | <Mavigh
| : \
™ Davice Comnsct Platfor | 473 131

US 12,346,399 B2

Sheet 1 of 30

Jul. 1, 2025

U.S. Patent

gt gy piy gy Tely Tpiy gy gl g Spih Jigl GEgF gt gl Wigf wigt pEy’ Ry iy Tply gy iy i Sg g Jgh gk JSgF gt g iy Wiy iy Taly iy ply Spi Egl

L Ol

LI0JjEl 198UL00 80Ma)

<fEitai
10

<550
< |
=355 108y

k

" 3000 UoneiBe gam

03 Lagxai0! g AU
(008 Mg J0UR Mo
YR O 08 104

A} BIASLL 01007
U083 H0d
cr 08 10

"

o9030iA 19 400

i

3000 LogeiBB)ul ek %8 oge:bayu; en %8_ uoes6alur Gem | | | {3000 Losesbelu am s

&_‘ _ 0

&S
=
‘s W

...'J

&.E

L

>
.

““““-ﬂ#*##ﬂﬂﬁﬁ
7
s
!
ol
LA
it

QwN | l_m”mm.mﬁou wgmw _____,_ﬁ,mm_m_.___mm.:._m_m.-___,__“._“.___”__“m-m.mm._m_ﬁ_:___H__.m.m.;_;_..._ _ | §1 & _

N

w.

US 12,346,399 B2

L B

TN YRR LTI I e S S

i e a1

“Toa’

Sheet 2 of 30

=6

Jul. 1, 2025

Ajoquo0RED Ay Bike L o) Ay USnIGIUIBGIAY BIABLY (4

8O0 BlLER
>

< SESRIMSA0 =018 10H0Ss

010
Ul
< 5 sairsab =018 oS

U.S. Patent

U.S. Patent Jul. 1, 2025 Sheet 3 of 30 US 12,346,399 B2

hitos:/lapp.mevia viaudiovideo

A0~ Microphone & o
Camera Confroller

hiins:/lapp. mevia fvlkeypad

wLe L DN
ﬁ UJ@C]D <enter)
----CJD

305

U.S. Patent Jul. 1, 2025 Sheet 4 of 30 US 12,346,399 B2

414

406 -

gt @O
' GET feypad app.mevia.tvikeypad

e | Controlier Server

gestures.s KeyPad Controlle
him zmages</408 e

other s
AppiD, UUID
ppiD, WU)

| socketio 4

1| TApeD, .
| uup, 412 o
| message.ovt, «—— ,/

message.vaile, SocketlO

message.y, 420 Command
message.y,
message., 435 /

message. ime, Ca Aop.mevia tvical
432 | CallApp.mevia tv:3000/cal

W , GET i 428 web integration code
- hitps://CallApp.mevia.vical P e - 424

KeyPressed Remotely
Was: |

|tontroller Standard 426

Web App

o HIML Pag

A 490 -~ socketon('KeyCommand’, unclion{message)|
\\ - var keyboardEvent = document.createEvent]
T KeyboardEvent);
Web integration code 4

keyboardEventfinitMethod] “keydown, .
| message.evtkeyValug, |
(. document dispatchEvent(keyBoardEvent),

FIG. 4

U.S. Patent Jul. 1, 2025 Sheet 5 of 30 US 12,346,399 B2

INITIALIZE FOR WEB COMMUNICATION

WITH SECURITY GREDENTIALS LIKE A 50
KEY, CERTIFICATE, AND CERTIFICATE
AUTHORITY

SET THE URL FOR THE ORIGINALAPPLICATIONAND |
AFTLILALIVIY > RETRIEVE RESOURCES FOR THE APPLICATION FROM
LAUNCH COMMAND THE URL

WAIT FOR AN
APPLICATION

500

502

oEND ACOMMAND

TO INITIALIZE SET THE APPLICATION 1D AND A FORM OF

AUTHENTICATION

ACONTROLLER

-~

QUCKRESPONSECODETOTHE. | 530

QUICK RESPONSE CODE STRING

APPEND THE DOM FROMA URL ~38

GENERATE ARESPONSE USING THE DOM OF THE URL |~

FIG. 5

U.S. Patent

Jul. 1, 2025

Sheet 6 of 30 US 12,346,399 B2

INITIALIZE AN HTTP SERVER WITH

SPEC

CREDENTIAL

FIED SEC

URITY

5 VALIDATE
AN

LOAD THE APPLICATION

RETRIEVE THE CONTROLLER DOM

ARESPONGE IS GENERATED
BASED ON THE CONTROLLER'S

DOM

030

040

WAIT STATE

625

DELIVER THE CONTROLLER IN RESPONSE

10 THE SCANN

NG OF ‘I‘HE QU'CK ____________________

RESPONSE CODE

F THE AUTHENTICATION CHECK 0
S SUCCESSFUL THE
CREDENTIALS ARE VAUDATED

USE EVENTS FROM THE DOM TO

CONTROLLER |

GENERATE AQUICK RESPONSE CODE FOR

PRINT QUICK

RESPONSE CODE

AUTHENTICATION PROCESS

0

DISPLAY QUICK | ~624
RESPONSE CODE

U.S. Patent Jul. 1, 2025 Sheet 7 of 30 US 12,346,399 B2

WebSockets
100~

Cotrolier - %

WebRTC Tunnel

A et v N

N

U.S. Patent

810~

RIGHT

applmewa,.tvigestures;

' -

Jul. 1, 2025

. \ B) .. i ! :
IR EEEEEEEE S |
_— - - .
. EEEEEREEEERE TR .
.a ; - ‘._a Ly s ’ :a _a._.._a .._a
: . F R I I TR I SO N S OB A |
A 3 - | g T | J T .
. . . \ - .. i o} .
BERRRS] BN |
. ‘ ' 1
; 1% ¥
, Y |

' I:—" |!|. 1:'“‘ I‘:P -.":"r":-
HAEEENREENREENNDNEN . {iTa it
IR REEEEENNEEENNEE O ¥ ' it
! =5 |"". l""}‘+ LA B |"'_q . N]] _
, PR T R AT N TR I O AU U0 S-S, RO SO0 A A, 4
i ! i ; i i 4]] v 11 8
) .--.J'-"- .
[N EERRREE -

Sheet 8 of 30

Device Connect Platform

Devie Connect) Device Connect
Platforn1 || Platform2_|

Device Comnectl] Aune,

Device Connect |
Piafom4 |

Device Connect 5
(Game application |

Platiorm 3

Platiorm 2

CHOOSE A GAME
- PAC-MAN

630

US 12,346,399 B2

V6 Ol

US 12,346,399 B2

Sheet 9 of 30

¢
109UU07) B0IAS

WIOJE|4 19°UUCT) 90IAR(] .

"

O 8l

saimsabyAremnawr-dde] |
|

Jul. 1, 2025

~
o
Qo
~
S
P]
)
-

US 12,346,399 B2

Sheet 10 of 30

A ‘puatonoj=)aa essaus
X ‘anowyonoj=iaabessau - (6
% ‘ueisuonojna abessoll

2025

Jul. 1,

U.S. Patent

e P e e - - e -

U.S. Patent Jul. 1, 2025 Sheet 11 of 30 US 12,346,399 B2

100 10 101 0 0

form

- :) .. Device Cnnect Plat
Current App 1D UID Authentication nlerface

___________ R I R
; . NFTLab - f234-8foon-lab oginipasswd> url: “httpsif...

3 = o o1 07at Simwih {ui: e,
E T e R gl sl

QTR <htmi with (Ui false,
- 1234 8Tox20eD oginfpasswd> url: “hitpsif....."}

FIG. 10

U.S. Patent Jul. 1, 2025 Sheet 12 of 30 US 12,346,399 B2

1102 message; — |10
message: avt; gs reamVideoAudio | StreamViceo”
; ytz touchstart, mousestart’ data: data;mage/png;baseb4
------------------------------------ k 5;85556 1104 mes.;ége 128
| evi="swipe ngnt’ evt Stream
xy} tunnel: Tunnel
tunnellD ; id
o videostream,
(20 audioStream,
webRTC Offer
1106
message; 13
eVt up_key_dowr essage streamAudio”
daa AudnoBu‘fer{]

gl Tunnet
tunnellD i
, audiostream,
1112 WebRTC Offer

™ -l message: il

.|l eviBkey down ev t"acoel

accel X,
accel y,
acee

3D Gestures

message: L

ot Theress .

_Imessage:

et o 1
data: Keylp, keyCode
Card Reader

‘message: 122
- evt image/png

data: datamage/png;basetd

FIG. 11

U.S. Patent Jul. 1, 2025 Sheet 13 of 30 US 12,346,399 B2

1200

1204 1206

|| [ussencan|_ ||,
] Emuiator

USB WebCam :
Emuator |

1250

ICE Server ;
STUN eglacorp.com:19302 |

1216\ Emulated WebChen ' 1230
DEVICE CONNECT PLATFORM 5 /

nect
Interface o

- Device Connec Platform
RT1C Server

1233 o navigatormediaDevices. — o

1225
Screen Cast getUserMediat{audio: true}, (s z'eam)

Y
g
AR |

| “msess.

d¢l Old —— Gz

03I} 12907
48338) ‘fan) opnel eipaiysasiab A IO

%m_ SHUBORIDALL oeDiRY

{8

US 12,346,399 B2

- Oapy\ ey

8A9S 800

Sheet 14 of 30

7 e el LRl 18Ul 338
o ‘

T T
@%@.ﬁ_ e oo soeq o) Axoid a8k, paepmuz |7C

opoo uonebenn gan | shoune-BmeLl

:

Jul. 1, 2025

(0661607 QIOOBDB NN LS o (OpS/L00gmnes M ODSIO00G-IRAIES S

. u EUR (1A% G Ol D06 LoRdO e
w7, |) T | UOISSBS 104 d0S 1008 00ps eaes ssi

JOTRUISA0

U.S. Patent

U.S. Patent Jul. 1, 2025 Sheet 15 of 30 US 12,346,399 B2

JSB or WebRTC Pasr

Deissce Connect Platiorm Server - Display {stream Video + Auda@}

Web Socket ideo>
Server <t

saddress 800! meviapy | <Player jsMPEG=lnadcress:8000meviapp

~FUPEG

“lippetiesr e : ;
Caplure Soreens ~ 1290
mpegdvides,

mp2 audio}

1222
Jevice Connect Piatiorm interface)

Controller Server

navigalormediadevices.
setUserMedialiaudio: fruel, (stream)

Local Video

FIG. 12C

U.S. Patent Jul. 1, 2025 Sheet 16 of 30 US 12,346,399 B2

T — e
{P Address WM CLOSE P Address TAP 100,100

1P Address WM_LBUTTONDOWN ress fouchstart 400,100
1P Address WM_MOUSEMOVE xy ress MouseMove 300 100

P Address Wi _LBUTTONUP ress touchend 400,100

walmy sl

WS or webrtc routing

ApplD UUID Destination
0001 455-1241-44513 wss:/finaddress:8001/office
1001 4554141445135 wss:/ipaddrass:8001/skype;
0 4554141445135 SDP WebRTC Server |

\évenggke SBV‘rt - | Woodwame— .
eIver - USBVirual | - (1302
padress 8001/ofice Roz%gr 7 MEVIAVERSE

FFMPEG
Capture Screens
(Mpag2video, } on o
mpe) T]| | class=Jsmpeg™>
Uri="websocket{ipaddress:8001/office™)

A

USB WebCam

Emulator

1
+
1
1
1
1
1
1
-
1
1
1
1
1
1
T
1

L

02 1308

3 ¥
. a5 i,
b i i e
'PHP;"F:'F'PF‘"F:"P"P'P"F'P"P'PPF'F'F'F'i\'?"P':'PPF'"P'll"l'"F""F"l'?'"ll'F"ll'F""F""F"""F'F:!;!:!:!:!:!:!::
e e e N e N e e T P "
¢ A i) ¢ o e a a a a e a W
x:x:x:x:x:u:x:x:u:x:x:x:x:x:u:x:x:u:x:x:u:x:x:u:x:x:x:x:x:x:.1-::n::.1-::il-::n::n::x:x:u:x:x:x:x:n::il-::.1-:Fx:x’x:n::n::x:x:x:x:x:x:x:_ =
A e e e N e e e e e A A ae e e e e ae e e A ae e e e N e a ad a ada a a e ae u
a:iu:n:n:iu:n:a:x:n:x:iu:x"n"x"n"a”xxxxx"x"nxx”xxxxx”xxxxxxxxx”x”x“x*xxxxx*xHxxx*xHxxx*xxx”x*x”x“x”xxx”xxxxxxxxxxx“xxxl o
i i i i o
ol oa ol
Ei i i i i i L
M A A A L]]
A A A AN] o 5 .
n:a:a:a:a:a:n:a:a:a:a: - ";:”;.:”;:*;-”;.-"";-"";-"";.-"";-"":”;.-”;-"";-"";.-”;-"";-""p”p”p”p”p”p”p”:”p”p”p”p' =y o, e]
A A ‘H-xH‘HH‘xH-!F:xH‘!F:!F:HF:xH-!F:HH‘!H-!H‘HF:xF::.!F:HF:!F:!F:!F:!F:!F:HF:!F:HF:HF:!F:. e F"F' o ;.-“';- S ;.-"";- r e a
B i ";g";u*;g";u";u'*;g";g.";.:*;g'";g";g'*;g";g";u*;g'";.:";g'*;.:";g.";.:*;g'";g.";g'*;.:";g.";.:*;g'";.:";.:*;.:”;.:”;.:”;.:”;.:”;.:*;.:”;.:";.:*;.:";.:";.:*;.:”;.:”;.:”;"";.:”;"’;:”;:";:”;:";:";:*;:";:";:*;:";:‘
ANEEENNANNN L IR WA A A A A A A AN R A A A A A A A A R A A A A A AR A A A A R A A AN A A A A A R A KN A A A A AKX N A A A
m b mm R0 efatefate i e i e i i i i i
N N NN N AN B R B R - L i i i I e i N i N I i e i i e i
A ENEENNNNNN A A M N A A A A A e A A A A A A A
i m A g - - W Al el A a el e e N e e g e e e e a g e e e e ol e ad e e e
EEEEEEEEEEN A a W A I e I e I i i i
AN EEEEEEEEN - - A A A A A A A A N - AL A A A e A A A A A A A A
] | ol a ol W =Ty ol i a i ad al i
T .. .i.i. A AN A A AN A L LA A A A A A A A A A A A A A A A A o N o A AL A
LR . A A A A - L i i i e i i i i i iy
* F bk . AN N A A A M AN A A A A W ir wk
L - e I r il TAAA A AAAA AAAaaANAAA A [N >) 5 4 x AT
] Ll AN N AN A A A o A A L)) - e w .
A l"l-:l.#l"r#-l'# . . . TANANN AN AN AN A n A For e A o L L]
o - K - AN AR AN AN A T
b I N W LR | - . L i i e e moAma P) L3 e) LR LN
RN N) [] . NE NN ENNNNN e ettt *‘l"il'lilli R) 1R
3 [- - Fan. ™ A B T s e B B R R R R E B B " Ehalry
ifa.-_ :p.'-_'t:u;rfn YTkt 4 . N . :l:l:l:l:l:l:l:l:l:l:l ll:ll:ll:ll L _J:q;..-";.- s-*ii'-:- i l: e 5'-' Tu_-
L T L I T o . e T T Y, L A ol |]
. . || |)
o : P A - -.“r;'l'-ql-.#_'i:"' . N
A T . L L NN ~ 1 o [
N e e e RN ooy
**ﬁ-* "” " E ‘--b“1'-.|-*‘.|- 1 :: ----h L) L
o Hi:-: -l?'-. A A e -
i dr ar e % r - - - kR Ea - .
*k*k o hlj_-."r_-|.'r‘-i-'l'_l-. !'r
i L IR o .
e R W, |
- Ll ol el R e)
A . 0 Y ::}J
i LA L a
: LAl) x
- . P EE MM N
ﬁ- g k*k*tbtbk*t*&*b':::'
il A Sk ik ik drdr ks
! g . L LA
-3 : . P AL A e A
L] . LU UL
II‘-Ilvqauauau g : N N L
. i ik rF
. . - . q-*q- " 5
i ;

U.S. Patent Jul. 1, 2025 Sheet 17 of 30 US 12,346,399 B2

Adaplive HLS 1405
Stream rom M3U8 ___ S
s P__c aentO - 6/0412022:16:95:00 - 007 "GET St ream4
.,.ts P_client? - ... 6/04/2022:16:95:12 - 007 "GET Slream(-6.ts’
.%s P client2- ... 6/04/2022:16:55:13 - 007 “GET Stream(-11.ts"
{EdM.
ireama.ts
treamd.is
AN H ee—————————————— el
1410 1420 1 1
143" GET streamd.s ; GET stream0-d1s | | GET stream0-{1s
FIG. 14A
1405
/ DEVICE
Capture or Pict Video from TV Uevice Connect Platom 1440
Interface
tea 0 inpimpmeVRNIVEORE! | [Sream on Ciet Lo

Send Pict via SMS, WhatsApp, iMessage
1438—" Send Video via SMS, What L{Jpp |Messgage

1449 — Highest Cross Correlation

meviaVerse.createQRCode(TIMEQUT)

1448 g e
_ [- . 1440~ meviaverse sndCcmtroiler(ti
Sean QR Code and connect to MEVIAVERSE |~a—— il TV OII' Dlsplay)

FIG. 14B

399 B2

2

1SS MY BU0Y

346

2

US 12

Y BI0 POIDUE

I OHINOS

Sheet 18 of 30

"!ﬂ_:ﬂlw
'-‘:'-i.t.-._-

Vg
D

Jul. 1, 2025

g0 | & LUeld L) B0MAG | |7 Loked U Mg

30107 301

U.S. Patent

HUlGh

T

VAL

U.S. Patent Jul. 1, 2025 Sheet 19 of 30 US 12,346,399 B2

Ll - - Ll - - Ll - - Ll - - Ll - - Ll - - Ll - - Ll

’ i AlISOUrces»

Load N frames from Mobile
from NobieNumer

?{}rAEI Sources, S rea*ns[]

N Frames Wi Sreams ms] '

Cross Comelation of
gl

- Ri=frg= {4

ocafion = Gett.oc ation{Max(Ri)

ndQRcedemte{T"*J =frje, SS=true, Whaishpp=MobleNumber) |

FIG. 15

U.S. Patent

Jul. 1, 2025

1605

connect
Platform

Dongle

TMEOUT!

Waiting
BLE WIF}

Configure WIF

Sheet 20 of 30

B0 1615

Enter BLE WIF| Programming Mode

JUID= Decrypl(E, Private Key)
UUID activate =True,

US 12,346,399 B2

Mobile Phone

U.S. Patent Jul. 1, 2025 Sheet 21 of 30 US 12,346,399 B2

175 710

Device Connect
Piatform Intertace

e integration code

1725 1730
{790~ / '

Jevice Connect
Platiom Interface

gestures,s ' wel integration code
web integration code cesiure. s
FIG. 178

1745 1750

Davice Comnedt
Piatiorm ineriace

f:,esmfesjs | egration code
web Integration code ge&zare,;s

weD ntegration cods

FIG. 17C

US 12,346,399 B2

Sheet 22 of 30

Jul. 1, 2025

U.S. Patent

08

-

]

SIR0S0H
10 S [HT8HA o

duiddeyy
BNy

{51 DUBLLcY
ThY a } bsu

L L L b

g

safiu) ddy oen 7191
8081

S

“

Biralng ‘apoo uonesBey gam

{

3380RIE0
{

3988 ‘330 BIARU)

Ja0BS 41 IH

BAIBS BIABIA

R0 QN | |
06y 800040 | 0K

9ElIal] BOEl
B0 BN

B 11

ARG
g

U.S. Patent Jul. 1, 2025 Sheet 23 of 30 US 12,346,399 B2

[Controller

. I I Device Connect Platiorm Server ’
Server

190,
message e niContoller | message.command

ORCode, ApplD. Tunne 1908
1940~ | UUID, Database > Mapping T
Message.command | gy WebRTS o

and Routing WehSockets

- B 1913 | message.command
nitController /
message.evi message.command |

Controller
Server

Device Connect Platiorm Server

U.S. Patent Jul. 1, 2025 Sheet 24 of 30 US 12,346,399 B2

Device Connect
Platiorm Interface
e T .

(RCode, AppiD, Tunne

UUID, Dataase Mapping
| for WebRTS or
 WebSockets

and Routing

controller Mevia Server I

L 0
HTML, JavaScript—" e 200 2030

— = = - __.._/4 — 7

Cable & Satellite {e.9. COMCAST DirectTV)

FIG. 20

U.S. Patent Jul. 1, 2025 Sheet 25 of 30 US 12,346,399 B2

{appD' . /2114

2110 nackel= UUID
Device comnect platiorn\ .. Messagead, o
100 evi.mousestar, X, §, Z 218 messagel /2 QrUrl 8 2l

n KeyB v
2@ _______________ ' inCon ol \

. Canvas=baseﬁ4,img/png
| Audio = sfream]..|
2142

Application}—
Mapper |

| .
ConrolierUUlDZ " nitController |
ApplD2 wibe] m|tCOntroler

eVt swipeRight
2108'\ EVT Keyb <C ri> .
Device connect platiorm

_ P
"""""" ‘ ? ore WU | intoe

 Command/

Maco e
Magic Wand gg&g%ier

YN Bandwidth,
initiaiize Load | _ Load perApp, -

(slider’).next():
Device connect platform

T intoe

2144 2160

2150
Controller | | Balancer 008 2146

_________ e, W

Vit 5:3 | VG, VI 3 {C
2180 —
ot 185 2166 All

UD—fppD QRUT | Auh? PrevApplD?

javascript
Macro
Converter

JUID1 Appl1 QUdt | himl0
JUiD2 ApplD2 QU2 | him
JUID3 App D3 QU3 | N
UUID4 ApplDd Qulrid | Nt

| ApplDA, ApplD1

1 ApplD0 ou

, ApplD{) - ‘deo+Audlo
3 ApplD0 Magic Wand

U.S. Patent Jul. 1, 2025 Sheet 26 of 30 US 12,346,399 B2

2206 2210

\ ' -\Up, Down,
Left, R|gh.h,_
¢ Push, Pull,

uﬁ _ Doy
{time, dime: Delay, Go Back Clrcle

Accelerometer accelx. X. 30CeLX, - Craracter

a0ceL.), y-accely, Number
accel.z} 7.30081.2}

Data Capturing
FIG. 22A

" [1B4833T55415,
'-{) 3465310258217156,
"0 6023696810662746

- TET9TS107676025)

llllll

21 < 1648337557449,
'0,15002085807360444,
"{,024120880299808504,

7"0,249302093082666.30)

Training
FIG. 228 s

018 20 \

\ \ Up, Down,
Lett ngl"t,
Push, Pull.

— - (0 Back,
{ x:Accel Circie,
y.ACCeLY, . Character,
zAccelz, Number
§

Detaction

FIG. 22C

ACCELX, Y, Z, L

U.S. Patent Jul. 1, 2025 Sheet 27 of 30 US 12,346,399 B2

10

IO, o\l
i) i
il

U.S. Patent Jul. 1, 2025 Sheet 28 of 30 US 12,346,399 B2

~ 120
2420
/ Socketl0
3DApp.mevia.tv:3000/call - Command
3DApp.mevia.vical

JOmevia,s 40

/2 N S '
iip,ntips 2428 web integrationcode |~ Hez
GET /App 2424

Standard
Web App | _-2426

Converter

href HTML Page

30 Canvas

socket.on("KeyAceel", function{message) {
3CCel.X = message.x, |
247 accel.y =messagey, Loremipsum
acCel.Z = Message.z

accelereometer = new MeviaAccelerometer(.... Xy.Z ...)

FIG. 24

U.S. Patent Jul. 1, 2025 Sheet 29 of 30 US 12,346,399 B2

Inttialize Authentication with Gestures

— - Tfﬁlﬂ Authentl Catlﬂﬂ GEStUT@S with ACCE[Data |

TrainingData = Sequence[Accel Data ...

Go into Test Data, Capture Accel Data

-~
Valicate Correlation with Training

Save Neural Network for Use L)

FIG. 25

U.S. Patent
2600

N

Jul. 1, 2025 Sheet 30 of 30 US 12,346,399 B2

GENERATE AFIRST MESSAGE FOR AFIRST
BROWSER EXECUTED ON AFIRST COMPUTING :
DEVICE, THE FIRST MESSAGE INCLUDING
INSTRUCTIONS THAT IN RESPONSE TO BEING | 2602
EXECUTED BY THE FIRST BROWSER CAUSES A
REPRESENTATION OF AN INTERFACE OF A
PHYSICAL USER INPUT DEVICE TO BE
DISPLAYED BY THE FIRST BROWSER

PROVIDE THE FIRST MESSAGE TO THE FIRST M
BROWSER

BROWSER EXECUTED ONA SECOND
COMPUTING DEVICE, THE SECOND MESSAGE
________ NCLUDING INSTRUCTIONS THAT WHEN
USER INTERACTION WITH CONTENT PROVIDED
3Y THE SECOND BROWSER IN RESPONSIVE TO

NPUT FROM THE REPRESENTATION OF THE
NTERFACE OF THE PHYSICAL USER INPUT
DEVICE DISPLAYED BY THE FIRST BROWSER
WHEREIN THE PHYSICAL USER INPUT DEVICE IS
CONFIGURED TO INTERACT WITH THE CONTENT
PROVIDED BY THE SECOND BROWSER

PROVIDE THE SECOND MESSAGE TO THE B
SECOND BROWSER

US 12,346,399 B2

1

METHOD AND SYSTEM FOR A WEB
INTERACTION WITH OBJECTS AND
REMOTE DISPLAY TECHNOLOGIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Patent

Application Ser. No. 63/456,018, filed Mar. 31, 2023, and
entitled “Method and System for a Web Interaction with
Objects and Remote Display Technologies,” the entirety of
which 1s incorporated by reference herein.

FIELD OF THE DISCLOSURE

The present systems, apparatuses, and methods lie in the
field of communications and processing and, more specifi-
cally, to methods and systems for the creation of a distrib-
uted system for processing a controller using a mobile phone
and smart televisions as display, while the infrastructure
handles all message passing from controllers to applications
in a distributed system with decentralized processing as a
traditional operating system handles 1/O events and tasks.

BACKGROUND OF THE DISCLOSURE

Traditional implementations of remote management and
control of computers rely on protocols such as “Remote
Desktop Protocol” (RDP), “Virtual Network Computing”
(VNC) also known as RFB Protocol, Citrix “Internet Com-
puter Architecture” (ICA) as well as other proprietary
mechanisms, both client and server software, to remotely
control and manage a personal computer (PC), laptop, tablet,
mobile, or set top box.

In today’s digital landscape, many smart televisions are
limited to control by native applications designed for use
with a remote control. Predominately, these applications
serve streaming purposes and are not designed for dynamic
interaction with mobile computing devices. A solution 1s
needed that enables seamless interactive user experiences
with a television via a mobile computing device.

SUMMARY OF THE DISCLOSURE

An aspect of the disclosed embodiments includes a
method. The method comprises: generating a first message
for a first browser executed on a first computing device, the
first message including instructions that in response to being
executed by the first browser causes a representation of an
interface ol a physical user mput device to be displayed by
the first browser; providing the first message to the first
browser; generating a second message for a second browser
executed on a second computing device, the second message
including 1instructions that when executed by the second
browser enables user interaction with content provided by
the second browser in responsive to mput from the repre-
sentation of the mterface of the physical user mput device
displayed by the first browser, wherein the physical user
mput device 1s configured to interact with the content
provided by the second browser; and providing the second
message to the second browser.

Another aspect of the disclosed embodiments includes a
system. The system comprises: at least one processor circuit;
and at least one memory that stores instructions to be
executed by the at least one processor circuit. The 1nstruc-
tions are configured to perform operations that comprise:
generating a first message for a first browser executed on a

10

15

20

25

30

35

40

45

50

55

60

65

2

first computing device, the first message including instruc-
tions that in response to being executed by the first browser

causes a representation of an interface of a physical user
input device to be displayed by the first browser; providing
the first message to the first browser; generating a second
message for a second browser executed on a second com-
puting device, the second message including instructions
that when executed by the second browser enables user
interaction with content provided by the second browser 1n
responsive to mput from the representation of the interface
of the physical user mput device displayed by the first
browser, wherein the physical user mput device 1s config-
ured to interact with the content provided by the second
browser; and providing the second message to the second
browser.

Another aspect of the disclosed embodiments includes a
computer-readable storage medium having program instruc-
tions recorded thereon that, when executed by at least one
processing circuit of a computing device perform a method.
The method comprises: generating a first message for a first
browser executed on a first computing device, the first
message including instructions that in response to being
executed by the first browser causes a representation of an
interface of a physical user input device to be displayed by
the first browser; providing the first message to the first
browser; generating a second message for a second browser
executed on a second computing device, the second message
including instructions that when executed by the second
browser enables user interaction with content provided by
the second browser in responsive to mput from the repre-
sentation of the interface of the physical user mput device
displayed by the first browser, wherein the physical user
mput device 1s configured to interact with the content
provided by the second browser; and providing the second
message to the second browser.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures, where like reference numerals
refer to identical or functionally similar elements throughout
the separate views, which are not true to scale, and which,
together with the detailed description below, are incorpo-
rated 1n and form part of the specification, serve to illustrate
further various embodiments and to explain various prin-
ciples and advantages all 1n accordance with the systems,
apparatuses, and methods. Advantages of embodiments of
the systems, apparatuses, and methods will be apparent from
the following detailed description of the exemplary embodi-
ments thereof, which description should be considered in
conjunction with the accompanying drawings in which:

FIG. 1 1s a block diagram of an exemplary embodiment of
device connect applications and architecture for a web
iteration with objects and remote display technologies;

FIG. 2 1s a diagrammatic illustration of exemplary
embodiments of a controller for a paint palette and a game
controller for the architecture of FIG. 1;

FIG. 3 1s a diagrammatic 1illustration of exemplary
embodiments of a controller for a keyboard, a camera, and
a microphone for the architecture of FIG. 1;

FIG. 4 1s a diagrammatic 1illustration of exemplary
embodiments of a client and server architecture and mes-
saging using SocketlO and WebSockets and interaction with
smart televisions for the architecture of FIG. 1;

FIG. 5 1s a flow chart for an exemplary embodiment of a
method to enable a server-based interface to serve a smart
television in the device connect platform architecture of

FIG. 1;

US 12,346,399 B2

3

FIG. 6 1s a flow chart for an exemplary embodiment of a
method to enable a server-based interface to server a con-
troller for a device connect platform application

FIG. 7(a) 1s a diagrammatic illustration of an exemplary
embodiment of a WebSocket architecture for communica-
tions;

FI1G. 7(b) 1s a diagrammatic illustration of an exemplary
embodiment of a WebRTC architecture for communications;

FIG. 7(c) 1s a diagrammatic 1llustration of an exemplary
embodiment of a WebRTC w/Tunnel architecture for com-
munications;

FIG. 8(a) 1s a diagrammatic illustration of an exemplary
embodiment of a swipe-right-interaction to load a game
controller and a game application of FIG. 8(c) serviced by
the DEVICE CONNECT PLATFORM i1nto a smart televi-
S101;

FIG. 8(b) 1s a diagrammatic illustration of an exemplary
embodiment of a tap interaction to load the game controller
and a game application of FIG. 8(c¢) serviced by the device
connect platform 1nto a smart television;

FIG. 8(c) 1s a diagrammatic 1llustration of an exemplary
embodiment of a game controller and a game application
serviced by the device connect platform for use on a smart
television;

FIG. 9(a) 1s a diagrammatic illustration of an exemplary
embodiment of selecting an application using hand interac-
tions for a drawing application;

FIG. 9(b) 1s a diagrammatic illustration of an exemplary
embodiment of a drawing interaction 1n the drawing appli-
cation selected 1n FIG. 9(a);

FIG. 10 1s a diagrammatic illustration of an exemplary
embodiment of mapping QR codes to applications and
device connect platform interfaces to load;

FIG. 11 1s a diagrammatic 1illustration of exemplary
embodiments of controllers used 1n device connect platform
applications including touchpad, video, controller, audio,
keyboard, 3d gestures, phone keyboard, card reader, and
imaging;

FIG. 12(a) 1s a block diagram of an exemplary embodi-
ment of a device connect platform multimedia application
and integration with USB WebCameras and other USB
devices over IP;

FIG. 12(b) 1s a block diagram of an exemplary embodi-
ment of a device connect platform system with WebRTC and
WebSockets:

FIG. 12(c) 1s a block diagram of an exemplary embodi-
ment of device connect platform streaming using CANVAS
and a web application;

FIG. 13 1s a block diagram of an exemplary embodiment
of device connect platform remote access for a Windows
computer;

FIG. 14(a) 1s a block diagram of an exemplary embodi-
ment of detecting streams using contextual awareness;

FIG. 14(b) 1s a block diagram of an exemplary embodi-
ment of capturing a screen to eliminate the need of a QR
Code:

FIG. 14(¢) 1s a diagram displaying Smart TV detection
using Ultra-wide Band (UWB) and positioning instead of a
QR Code.

FIG. 15 1s a flow chart for an exemplary embodiment of
a method of detecting location based on a smart television
display video feed;

FI1G. 16(a) 1s a diagrammatic 1llustration of an exemplary
embodiment of a dongle with a QR Code and Bluetooth Low
Energy WIFI provisioning;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 16(b) 1s a block diagram of an exemplary embodi-
ment of method for interacting the dongle and QR Code of
FIG. 16(a) with Bluetooth Low Energy WIFI provisioning;

FIG. 17(a) 1s a block diagram of an exemplary embodi-
ment ol a combination of gesture.js and mevia.js and their
use 1n the device connect platform architecture of FIG. 1;

FIG. 17(b) 1s a block diagram of an exemplary embodi-
ment of a combination of gesture.js and mevia.js and their
use 1n the device connect platform architecture of FIG. 1;

FIG. 17(¢) 1s a block diagram of an exemplary embodi-
ment ol a combination of gesture.js and mevia.js and their
use 1n the device connect platform architecture of FIG. 1;

FIG. 18 1s a block diagram of an exemplary embodiment
of a method of processing messages in the device connect
platform architecture of FIG. 1;

FIG. 19 1s a diagrammatic illustration of an exemplary
embodiment for message.evt and message.command pro-
cessing 1n the device connect platform architecture of FIG.

1,

FIG. 20 1s a diagrammatic illustration of an exemplary
embodiment of integration of the device connect platiform
architecture of FIG. 1 to Broadcasting Platforms and Sys-
tems;

FIG. 21 1s a block diagram of an exemplary embodiment
ol content routing apparatuses and systems for commands
and messages from a controller in the device connect
platform architecture of FIG. 1;

FIG. 22(a) 1s a diagrammatic 1llustration of an exemplary
embodiment of data capturing for a controller that will be
trained using a Neural Network or Deep Learning using
LSTM or other Neural Network;

FIG. 22(b) 1s a diagrammatic 1llustration of an exemplary
embodiment of training the neural network to match difler-
ent commands using a controller.

FIG. 22(c) 1s a diagrammatic 1llustration of an exemplary
embodiment of detection of movements used by a controller
system with Deep Learning or Neural Networks;

FIG. 23(a) 1s a diagrammatic 1llustration of an exemplary
embodiment of a swipe-right-interaction to load a game
controller and a game application of FIG. 8(c) serviced by
the device connect platform into a smart television;

FIG. 23(b) 1s a diagrammatic 1llustration of an exemplary
embodiment of a tap interaction to load the game controller
and a game application of FIG. 8(¢) serviced by the device
connect platform into a smart television;

FIG. 23(c) 1s a diagrammatic 1llustration of an exemplary
embodiment of a game controller and a game application
serviced by the device connect platform for use on a smart
television;

FIG. 24 1s a diagrammatic illustration of an exemplary
embodiment of a device connect platform Application that
maps 3D gestures to 3D display actions using 3DMevia.js;
and

FIG. 25 1s a block diagram of an exemplary embodiment
of a method for authenticating access or recognizing ges-
tures for a device connect platform application using gesture
driven tools.

FIG. 26 generally 1llustrates a flow diagram of a method
for enabling a user to control and interact with content on a
computing device using a browser interface on another
computing device, according to the principles of the present
disclosure.

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

(Ll

As required, detailed embodiments of the systems, appa-
ratuses, and methods are disclosed herein; however, it 1s to

US 12,346,399 B2

S

be understood that the disclosed embodiments are merely
exemplary of the systems, apparatuses, and methods, which
can be embodied 1n various forms. Therefore, specific struc-
tural and functional details disclosed herein are not to be
interpreted as limiting, but merely as a basis for the claims
and as a representative basis for teaching one skilled 1n the
art to variously employ the systems, apparatuses, and meth-
ods 1n virtually any appropriately detailed structure. Further,
the terms and phrases used herein are not intended to be
limiting; but rather, to provide an understandable description
of the systems, apparatuses, and methods. While the speci-
fication concludes with claims defining the features of the
systems, apparatuses, and methods that are regarded as
novel, 1t 1s believed that the systems, apparatuses, and
methods will be better understood from a consideration of
the following description 1n conjunction with the drawing
figures, 1n which like reference numerals are carried for-
ward.

In the following detailed description, reference 1s made to
the accompanying drawings which form a part hereof, and
in which are shown by way of illustration embodiments that
may be practiced. It 1s to be understood that other embodi-
ments may be utilized, and structural or logical changes may
be made without departing from the scope. Therefore, the
following detailed description 1s not to be taken 1n a limiting
sense, and the scope of embodiments 1s defined by the
appended claims and their equivalents.

Alternate embodiments may be devised without departing
from the spirit or the scope of the disclosure. Additionally,
well-known elements of exemplary embodiments of the
systems, apparatuses, and methods will not be described 1n
detail or will be omitted so as not to obscure the relevant
details of the systems, apparatuses, and methods.

Before the systems, apparatuses, and methods are dis-
closed and described, 1t 1s to be understood that the termi-
nology used herein 1s for the purpose of describing particular
embodiments only and 1s not intended to be limiting. The
terms “comprises,” “‘comprising,” or any other variation
thereof are intended to cover a non-exclusive inclusion, such
that a process, method, article, or apparatus that comprises
a list of elements does not include only those elements but
may include other elements not expressly listed or inherent
to such process, method, article, or apparatus. An element
proceeded by “comprises . . . a” does not, without more
constraints, preclude the existence of additional identical
clements in the process, method, article, or apparatus that
comprises the element. The terms “including” and/or “hav-
ing,” as used herein, are defined as comprising (i.e., open
language). The terms “a” or “an”, as used herein, are defined
as one or more than one. The term “plurality,” as used
herein, 1s defined as two or more than two. The term
“another,” as used herein, 1s defined as at least a second or
more. The description may use the terms “embodiment™ or
“embodiments,” which may each refer to one or more of the
same or different embodiments.

The terms “coupled” and “‘connected,” along with their
derivatives, may be used. It should be understood that these
terms are not intended as synonyms for each other. Rather,
in particular embodiments, “connected” may be used to
indicate that two or more elements are 1 direct physical or

clectrical contact with each other. “Coupled” may mean that
two or more elements are in direct physical or electrical
contact (e.g., directly coupled). However, “coupled” may
also mean that two or more elements are not in direct contact
with each other, but yet still cooperate or interact with each
other (e.g., indirectly coupled).

10

15

20

25

30

35

40

45

50

55

60

65

6

For the purposes of the description, a phrase 1n the form
“A/B” or in the form “A and/or B” or in the form “at least
one of A and B” means (A), (B), or (A and B), where A and
B are variables indicating a particular object or attribute.
When used, this phrase 1s intended to and 1s hereby defined
as a choice of A or B or both A and B, which i1s similar to
the phrase “and/or”. Where more than two variables are
present 1n such a phrase, this phrase 1s hereby defined as
including only one of the variables, any one of the variables,
any combination of any of the vanables, and all of the
variables, for example, a phrase in the form *“at least one of
A, B, and C” means (A), (B), (C), (A and B), (A and C), (B
and C), or (A, B and C).

Relational terms such as first and second, top and bottom,
and the like may be used solely to distinguish one entity or
action from another entity or action without necessarily
requiring or implying any actual such relationship or order
between such entities or actions. The description may use
perspective-based descriptions such as up/down, back/front,
top/bottom, and proximal/distal. Such descriptions are
merely used to facilitate the discussion and are not intended
to restrict the application of disclosed embodiments. Various
operations may be described as multiple discrete operations
in turn, in a manner that may be helptul 1n understanding
embodiments; however, the order of description should not
be construed to imply that these operations are order depen-
dent.

As used herein, the term “about” or “approximately”
applies to all numeric values, whether or not explicitly
indicated. These terms generally refer to a range of numbers
that one of skill 1n the art would consider equivalent to the
recited values (i.e., having the same function or result). In
many 1nstances these terms may include numbers that are
rounded to the nearest significant figure. As used herein, the
terms “‘substantial” and “substantially” means, when com-
paring various parts to one another that the parts being
compared are equal to or are so close enough in dimension
that one skill 1n the art would consider the same. Substantial
and substantially, as used herein, are not limited to a single
dimension and specifically include a range of values for
those parts being compared. The range of values, both above
and below (e.g., “+/-" or greater/lesser or larger/smaller),
includes a variance that one skilled 1n the art would know to
be a reasonable tolerance for the parts mentioned.

It will be appreciated that embodiments of the systems,
apparatuses, and methods described herein may be com-
prised of one or more conventional processors and unique
stored program 1instructions that control the one or more
processors to 1mplement, 1n conjunction with certain non-
processor circuits and other elements, some, most, or all of
the functions of the systems, apparatuses, and methods
described herein. The non-processor circuits may include,
but are not limited to, signal drivers, clock circuits, power
source circuits, and user mput and output elements. Alter-
natively, some or all functions could be implemented by a
state machine that has no stored program instructions, or in
one or more application specific integrated circuits (ASICs)
or field-programmable gate arrays (FPGA), in which each
function or some combinations of certain of the functions
are 1mplemented as custom logic. Of course, a combination
of these approaches could also be used. Thus, methods and
means for these functions have been described herein.

The terms “program,” “software,” “software application,”
and the like as used herein, are defined as a sequence of
instructions designed for execution on a computer system or
programmable device. A “program,” “soltware,” “applica-
tion,” “computer program,” or “soltware application” may

US 12,346,399 B2

7

include a subroutine, a function, a procedure, an object
method, an object implementation, an executable applica-
tion, an applet, a servlet, a source code, an object code, any
computer language logic, a shared library/dynamic load
library and/or other sequence of instructions designed for
execution on a computer system.

Herein various embodiments of the systems, apparatuses,
and methods are described. In many of the different embodi-
ments, features are similar. Therefore, to avoid redundancy,
repetitive description of these similar features may not be
made 1n some circumstances. It shall be understood, how-
ever, that description of a first-appearing feature applies to
the later described similar feature and each respective
description, therefore, 1s to be incorporated therein without
such repetition.

Although the systems, apparatuses, and methods are 1llus-
trated and described herein as embodied 1 systems and
methods for a web interaction with objects and remote
display technologies, 1t 1s, nevertheless, not itended to be
limited to the details shown because various modifications
and structural changes may be made therein without depart-
ing from the spirit of the disclosure and within the scope and
range of equivalents of the claims. Additionally, well-known
clements of exemplary embodiments will not be described 1n
detail or will be omitted so as not to obscure the relevant
details of the systems, apparatuses, and methods.

Additional advantages and other features characteristic of
the systems, apparatuses, and methods will be set forth in the
detailed description that follows and may be apparent from
the detailed description or may be learned by practice of
exemplary embodiments. Still other advantages of the sys-
tems, apparatuses, and methods may be realized by any of
the instrumentalities, methods, or combinations particularly
pointed out in the claims.

Other features that are considered as characteristic for the
systems, apparatuses, and methods are set forth in the
appended claims. As required, detailed embodiments of the
systems, apparatuses, and methods are disclosed herein;
however, 1t 1s to be understood that the disclosed embodi-
ments are merely exemplary of the systems, apparatuses,
and methods, which can be embodied in various forms.
Therefore, specific structural and functional details dis-
closed herein are not to be interpreted as limiting, but merely
as a basis for the claims and as a representative basis for
teaching one of ordinary skill 1n the art to variously employ
the systems, apparatuses, and methods i1n virtually any
appropriately detailed structure. Further, the terms and
phrases used herein are not intended to be limiting; but
rather, to provide an understandable description of the
systems, apparatuses, and methods. While the specification
concludes with claims defining the systems, apparatuses,
and methods of the disclosure that are regarded as novel, 1t
1s believed that the systems, apparatuses, and methods will
be better understood from a consideration of the following
description in conjunction with the drawing figures, 1n
which like reference numerals are carried forward.

Embodiments disclosed herein are directed to a device
connect platform that addresses limitations of existing tech-
nologies such as Remote Desktop Protocol (RDP). The
device connect platform eliminates the need for RDP by
using standard Hypertext Transier Protocol (HTTP) and
video tags, making it possible to access remote units without
a transcoding server. The device connect platform enables
users to control web applications using mobile computing,
devices such as tablets, smart phones, augmented reality
glasses, virtual reality devices, or any other device that can
display information. These mobile computing devices act as

10

15

20

25

30

35

40

45

50

55

60

65

8

controllers, and the need for a traditional controller interface
1s eliminated. Additionally, the platiorm employs video
encoding to project remote screens mto a web browser. For
example, the capabilities of JavaScript are used to transiorm
a mobile computing device 1nto a physical user input device
(e.g., mouse, keyboard, game controller). This allows users
to send touch commands to a remote server that 1s displayed
on a computing device, such as a smart television.

Remote management 1s achieved by forwarding touch
commands from the mobile web browser to a remote com-
puting device, which can be displayed on a smart television
or streamed through various protocols such as Web Real-
Time Communication (WebRTC), Real-Time Messaging
Protocol (RTMP), HTTP Live Streaming (HLS), or DASH
protocols, that are compatible with web browsers. The
platiorm further supports adaptive video quality, meaning 1t
can adapt to different network conditions and device capa-
bilities. For example, the platform can switch video resolu-
tion and quality based on a needs of a user.

The platform serves as a decentralized or distributed
operating system. It connects web applications and mobile
computing devices that become controllers for web appli-
cations displayed on smart televisions, AR and VR displays
(Augmented Reality and Virtual Reality), and projectors.
The system utilizes JavaScript/CSS libraries (e.g., “ges-
tures.js”) for control. The user’s mobile device acts as the
controller, sending commands and gestures that are trans-
lated into JavaScript macros for etlicient processing and
interactions with web applications. Meanwhile, a remote
webpage 1s displayed at the smart television that loads
another JavaScript file or files (e.g., mevia.js) and that
becomes the display. In some embodiments, an identification
mechanism, such as a quick-response (QR) code, can be
used to load a controller onto a smart television. This
mechanism includes parameters like an application 1dentifier
and other information that determines the destination server
for all users’ inputs and interactions. In one embodiment,
and to help further illustrate, a QR code 1s scanned to
activate a representation of an interface of a physical user
input device to be displayed on a mobile computing device
and to establish a communication channel between the
mobile computing device and smart television, enabling user
interaction with content displayed on the television via input
from the representation of the interface of the physical user
input device displayed on the mobile computing device.

The embodiments disclosed herein allows users to use
mobile computing devices as 1nput user devices and stream
content to smart televisions. By leveraging video encoding
and JavaScript, embodiments disclosed herein provide a
dynamic and adaptable user experience. The decentralized
nature of the plattorm means that it can be applied to a wide
range ol applications and computing devices. Any capabili-
ties of a web application tailored for a smart phone, tablet,
laptop, AR (Augmented Reality), Virtual Reality, Extended
Reality display, or desktop interfaces can now extend to use
with a smart television. In this platform, the mobile com-
puting device serves as the physical user input device, while
the smart television transtorms into the display and the
device connect platform operates as the central platform
handling messaging between the mobile computing device
and the smart television. In this disclosure, user mnput device
and controller are used interchangeably.

-

Io help 1illustrate this, FIG. 1 will now be described. In
particular, FIG. 1 1s a block diagram of an exemplary
embodiment of a cloud services network 102 that hosts
device connect platform 100 and several applications that
are accessible to device connect platform 100. A cloud

US 12,346,399 B2

9

services network as used herein refers to the underlying
technology that facilitates the access, storage, and manage-
ment of data, applications, and resources hosted 1n the cloud.
An application as referred to herein may be of any type of
web accessible application/service, such as a database appli-
cation, a social networking application, a messaging appli-
cation, a financial services application, a news application,
a search application, a web-accessible productivity applica-
tion, a cloud storage and/file hosting application, or the like.

As shown i FIG. 1, the applications include a (Non-
fungible token) NFT Lab 110, a Doorbell 120 (e.g.,
RING®), Games 130, Video Coniference 140 (e.g., Zoom™,
Microsoit Teams®, Slack®), and a Streaming Application
150 (e.g., Netilix®). Although cloud services network 102
of FIG. 1 1s shown to host only these applications, it 1s to be
understood that the techniques described herein may apply
to cloud services networks that host other applications, such
as email services (e,2., Google®, Outlook®), productivity
suites (e.g., Google Workspace™ Microsolt 365™), social
media platforms (e.g., Facebook®, Twitter®, LinkedIn®),
cloud storage and file sharing (e.g., Dropbox®, One-
Drive®), and online shopping (e.g., Amazon, eBay®).

Device connect platform 100 may include one or more
server devices and/or other computing devices. Any of the
applications may be associated with resources that are stored
on one or more application servers. Each component of
cloud services network 102 may be communicatively con-
nected via one or more networks (not pictured in FIG. 1).
These one or more networks may include, for example, a
local area network (LLAN), a wide area network (WAN), a
personal area network (PAN), and/or a combination of
communication networks, such as the Internet.

Further, as depicted in FIG. 1, device connect platform
100 uses a component, web integration code 170 (also
referred to as mevia.js herein when referenced as a
JavaScript file or files in some embodiments), which 1s part
of device connect platform application 160 (also referred to
as Mevia App herein in some embodiments), and web
integration code 170 1s configured to integrate various web
technologies like JavaScript, CSS, and HTML from an
original web application. In some embodiments, with the
implementation of mevia.js, this may be achieved 1n frame-
works such as React by creating a component <MEVIA/>
180. In some embodiments, device connect platform 100
may operate on different ports, including secure SSL mode
for HITPS, depending on how web servers are set up.
Device connect platform 100 1s adaptable to different web
server configurations. Device connect platform 100 may
work with servers like NGINX or Apache and even in hybrid
setups with NodelS 175, supporting both HI'TP and HT'TPS.
Web integration code 170 may act as a connecting piece,
essentially linking various elements of device connect plat-
form 100 communication and data flow between different
parts of the system, serving as a “glue” that holds compo-
nents of device connect platform 100 together. Applications
can be hosted on their own server, whether they are within
the same network or spread across diflerent networks. This
provides flexibility 1n resource allocation and deployment.
Device connect platform 100 may employ technologies, like
SocketlO for WebSockets and WebR1C for peer-to-peer
communication. These technologies enable real-time 1nstant
communication between controllers and the web applica-
tions that are being controlled.

For example, in some embodiments, an application may
use two or more ports, for example, to operate in SSL mode
tor HI'TPS and another port (e.g. 3000). This depends on the

configuration of a web server (e.g NGINX or Apache), a

5

10

15

20

25

30

35

40

45

50

55

60

65

10

hybrid configuration running NodelS 1735 and a webserver
supporting HTTP/HTTPS server 165 can also be used to
support servicing a device connect platform 100 application
as well as servicing controller applications. As described, 1n
some embodiments, web integration code 170 (e.g., mevi-
a.]s) Tunctions as the glue code to device connect platiform
100 to “j01n” virtual environments, where messages carrying,
cvents and other messages from a controller or set of
controllers. Additionally, 1n some embodiments, each appli-
cation could reside on 1ts own server (e.g., as depicted 1n
FIG. 1, nftmevia.art, 1otexpert.com, meviagames.com,
zoom.mevia.tv, and mevia.tv). Also, all applications could
be collocated in the same network or 1in different networks.
Additionally, web integration code 170 (e.g., mevia.js) may
also include the use of SocketlO for web sockets (WS or
Web Socket Secured as WSS) and WebRTC when a peer-
to-peer communication 1s established between the controller
and the web application being controlled.

Further, in some embodiments, device connect platiorm
100 1s configured to convert any mobile terminal that uses a
web browser to a remote device that can control a smart
television using a browser application. In general, web
assets are used for displaying widgets when a web-based
terminal 1s 1 used, but could also be captured from a
web-based headless rendering engine, such as Puppeteer
(https://github.com/puppeteer/puppeteer). For example, all
mampulations and commands that are generated by the
device connect platform application can also be broadcasted
to a cable television or satellite operator.

Device Connect Platform Controllers

As described, device connect platform 100 1s configured
to work with several types of user input user devices, where
cach input user device functionality depends on the web
application that the input user device 1s meant to control. In
some embodiments, a representation of an interface of a
physical user iput device 1s displayed by the first browser
alter scanning a QR Code displayed on a smart television or
printed under a smart television. For example, in FIG. 1, QR
code 185 or other 1dentification mechanism may be used to
identify a user mput device to be displayed on mobile
computing device. For example, the QR code may identity
a remote control associated with a smart television. In some
embodiments, the QR Code includes parameters such as an
application identifier (e.g., Application Identifier (AppID) or
Universal Unique Identifier (UUID), etc.) and other infor-
mation that determines the destination server of any touch
gesture data, such as keypresses, touch moves, gestures
including accelerometer data that i1s captured at the mobile
computing device.

FIG. 2 provides exemplary embodiments ol representa-
tions of interfaces of physical user mput devices being
displayed by a browser executing on a computing device.
For example, a palette controller 200 and a game controller
210, are displayed on computing device 230. Computing
device 230 may be any type of stationary or mobile com-
puting device, imncluding a mobile computer or mobile com-
puting device (e.g., a smart phone, a laptop computer, a
notebook computer, a tablet computer such as an Apple
1IPad™, a netbook, etc.), a wearable computing device (e.g.,
a smart watch, a head-mounted device including smart
glasses such as Google® Glass™, etc.), or a stationary
computing device such as a desktop computer or PC (per-
sonal computer).

As shown 1n FIG. 2, palette controller 200 contains a grid
207 to map the display, as well as other commands shown
in 202 that may be associated with JavaScript source code
and libraries. For example, palette controller 200 may emat

US 12,346,399 B2

11

touch start, touch end, touch move, as a user touches grid
207 with a pen stylus or a finger. To help 1llustrate, x=100,
y=200, touch start can be generated, and sent 1n a message
to a drawing web application. In some embodiments, this 1s
being tracked by gestures.js 220 which 1s the script that
detects all gestures. At the same time, the recerving appli-
cation will process those events locally and complete pro-

12

touchend, x and v coordinates, as well as using k-nearest
neighbor (KNN), a neural network, or other machine learn-
ing techniques.

Assuming that touchEndX and TouchStartX are created
and a function “AbouttheSame™ idicates that two touchev-

ents are very close to each other, the following JavaScript
code will generate a Swipe Lelt and a Swipe Right event:

if (touchendX <= touchstartX && abouttheSame(touchstarty, touchendY, 80)) {
console.log(*Swiped left’);
sendCommand(“Swiped left”, x, v);

| else

if (touchendX >= touchstartX & & abouttheSame(touchstarty, touchendy, 80))

1

console.log(*Swiped right’);
sendCommand(“Swiped Right”, X, vy);

.

cessing, for mstance, as x=200, y=400, touch end event has
been detected 1 grid 207 or has touched the area on palette
205. Additionally, 1n some embodiments, a controller can
also associate JavaScript elements to be sent as a message,
for example a jQuery command such as “$(“#button’).click(
)” where the button 1s a remote HITML tag associated with
HTML such as <button 1d="button” /> 1n the web
application that 1s being controlled.

The controller may i1ssue the messages and events that are
passed to the device connect platform, where a content
router will then process all events and messages and direct
them to the proper application that has included mevia.js as
part of its libraries. The events generated by the represen-
tation ol the controller are directed to the web app that 1s
displayed on the television.

To help further illustrate, as depicted in FIG. 2, when a
user types the link or loads Uniform Resource Locator
(URL) 208, https://app.mevia.television/paintbursh/, associ-
ated with palette controller 200, palette controller 200 1s
displayed on a web browser executing on computing device
230. In some embodiments, a mput user device may be
associated with a particular application and all events,
keyboard messages, hand gestures, accelerometer readings,
are passed or emitted to a WebSocket command that encom-
pass the following JavaScript Object Notation (JSON)
object, for example:

Message = { evt: Type of event (e.g. “touch start”, X: position X,
Y: position Y}

As these events are captured by the gestures.;s library,
which 1s located and loaded as part of the HIML of the
controller, many other events can also be triggered, such as

swipe right, swipe left, swipe up, and swipe down at the
local level at the mobile device. These basic touch events
(e.g. touchstart, touchmove, touchend) are processed and
used to generate a message.comand or @ a
message.evt="Command.” In this case, a JSON message
will contain the following structure:

Message = { evt: Command,
Command: “Swipe Right”}

A swipe right event can be detected using multiple
methods including arithmetic comparison of touchstart and

25

30

35

40

45

50

55

60

65

In a different scenario, a gesture could signity “Tap” or
“Double Tap” and represent “Enter” or selection as a stan-
dard application. The interpretation of such commands 1s
then fetched 1n a database of device connect platform 100,
where a certain Application Identifier (ApplID) will have a
different behavior than others. For example, a “Long Tap”
could be mapped to a jQuery command or a standard HTML
command such as document.QuerySelector, where $(“#sli-
der”).goto(1), or send a slider JavaScript widget to the first
slide. Similarly, 1n a game scenario, a keyboard’s up, down,
left and right are mapped to 1cons or positions shown as part
of URL 216, https://app.mevia.television/gamecontroller.
When game controller 1s downloaded, the keypad 218 may
contain standard game functions as well as “macro” com-
mands 215 that are associated with one or several JavaScript
messages that are being executed remotely at the web
application 1n control. For example, for Doorbell 120, a
“Long Tap” (e.g. pressing the screen for four seconds) may
mean close the door, whereas a short tap may mean open the
door. The specific functionality 1s 1dentified and can be
changed 1n real-time as users are pressing and interacting
with the controller, depending on how the behavior 1s
established by those controllers. In some embodiments,
gestures.js 225 1s tracking any gestures detected.

FIG. 3 provides other exemplary embodiments of repre-
sentations of interfaces of physical user mput devices being
displayed by a browser. For example, FIG. 3 depicts a
microphone and camera controller 310 including micro-
phone 315 and cameras 320 and 325, which are available in
HTMLS5 1n more recent browsers. These controllers when

used could be combined with a WebRTC message and draw
on a remove <canvas> HTML object or be used for trans-
mission of voice 1n a voice chat application, for example,
when using a video conferencing client application:

Message= { evt: Audio or Audio + Video or Video
Payload: base64 image or webRTC socket to a canvas}

A remote website that expects a user to open a web
browser and authorize the use of a WebRTC camera or audio
should be able to stream to device connect platform 100 the
contents of the real-time video and audio processing or
process a sequence of screenshots captured from the camera
or audio snippets. FIG. 3 also depicts a keyboard controller
300 and messages sent from a keyboard tap at 305 which
may be interpreted as:

US 12,346,399 B2

13

Message = {evt: KeyBoard,
Value: “SpaceBar” }

Theretore, the embodiments disclosed herein show how to
process events, multimedia, and macros that are captured
from a controller and how those macros are handled by a
receiving application.

FI1G. 4 depicts device connect platform 100 processing of
a user interaction with a representation of a user input device
displayed on a computing device. More specifically, FIG. 4
depicts how a user handles a controller, 1n this example, a
keypad 402. For example, the user touches keypad 402 at
number 7, and the smart television will be updated to display
the number 7. In order to achieve that, the controller, which
1s displayed on smart phone 400, 1s located at the URL 404
https:/:app.mevia.television/keypad. The keypad web-app
includes multiple HIML/CSS objects with images including
mevia.js and gestures.js. In FIG. 4, the remote web appli-
cation 1s located at URL 432: https://callApp.mevia.televi-

sion/call. Both URL 404 and URL 432 are loaded asynchro-

nously and do not need to be synchronized. However, in
some embodiments, URL 432 may have been loaded first
betore URL 404 and 1s, for this example, ready to be used.
As such, the target application may contain the HIML tags,
“<anput type=text id="“callto”/>”, which will be used to
receive the keypad’s input 434. Hence, the value 1n 434 1s
mitially “ 7 or empty. As the mobile device loads the
controller via HI'TP or HITPS, the URL keypad at https://
app.mevia.television/ 406 loads the gestures. s library,
HTML, and images, as well as other JavaScript libraries
information. The controller’s URL also includes an appli-
cation identifier (ApplD) and UUIDs that are generated from
device connect platform 100 to associate a user’s events to
the application, and those values are embedded in the
response 408. The UUID value 1s unique and 1s used to
represent a session key. The “ApplD” or Application Iden-
tifier could also change and be used as “nonce” parameter
but 1t 1s not necessary for this particular example.

The message.evt and message payload 1s created after
pressing the key “7”. A SocketlO session 410 1s used to send
the JSON message structure 412 that includes the following
members: message.evt, message.value, message.x, mes-
sage.y, message.z, and message.time (or timestamp), which
provides position of the keypress event and 1ts value. The
message pavload can be expanded to include other param-
cters. The keypad module can be rendered as part of a nodejs
web application that listens to port 3000 and HTTPS port at
443, as shown at 414. Consequently, in FIG. 4, the KeyPad
controller 416 will use the session and the SocketlO request
418 but instead of being message.evt=touchStart at t=0, and
touchEnd a =200 ms, the message 1s replaced by device
connect platform 100 to a JavaScript command that is
embedded as part of the payload, 1n the SocketlO Request to
the web application with a “JavaScript libarry”. The web
application at step 420 receives message.evi=KeyPress,
value=7 which 1s then processed by the CallApp.Mewvia.tele-
vision using SocketlO or Websockets (WS or WSS, for
secured web sockets).

In FIG. 4, at the web application, the websocket 1s
controlled by the mevia.js 422 and any CSS resources 424
are used to display and modily the HTML “<input
type=text” 1d="callto”>"" field. By default the browser will
send to the mput screen with label “Key pressed remotely
was:” and the value 7. The keypress 1s then transformed to
a JavaScript “new keyboardEvent()” with the “keydown”

5

10

15

20

25

30

35

40

45

50

55

60

65

14

message, message.evt.keyValue. In this sequence of events,
keypad 402 has efiectively written over the remote screen a
value of ““7.” The intervention of the “Content Router” entity
1s omitted for simplicity, and a simple socket.broadcast.too
from SocketlO 1s used to show as an example how the value
of ““7” 1s transmitted from the phone to the application. In
fact, other applications retrieving the same webpage, and
hence all displays, smart televisions, tablets, or other brows-
ers connected to the same page will see updates recerved by
pressing a keypad from the mobile phone. Observe that
updates on 434 occur asynchronously without a new GET
request 1ssued by the web browser at 432 but instead by a
socket.on(“command”, . . .) that triggered the keyBoard-
Event that 1n turn simply updated the input screen had a
standard keyboard connected over USB and as defined by
the standard HTML page 426.

Additionally, the device connect platform server’s macro
converters 428 may require converting all references to local
or remote assets (e.g. hypertext reference attribute (href) tag
in HTML) 1 device connect platform application 100 to be
converted from local to fully qualified domain name
(FQDN) address. Even HTML tags related to “1image src” or
“<amg src="> html tag, and the path of the resource must be
converted to facilitate the conversion of a standard web
application to a device connect platform application. For
example, an asset loading from the standard HIML a URL
without a FQND <image src="“myimage.png’/> may be
converted 1nto <image src="https://callApp.mevia.televi-
sion/call/images/myimage.png’/>. This conversion permits
the use in cloud-based systems and access to CDN’s that
facilitate NodelS processing. Additionally, cross-origin
resource sharing (CORS) or cross origin sources must be
configured to facilitate loading resources from other Uni-
form Resource Identifier (URI) or URL other than the
original FQDN even with the same FQDN but executing
from a different port. The element 430 1n FIG. 4 shows how
using SocketlO a keyboard 1s delivered to the Mevia appli-
cation by dispatching a KeyBoardEvent to the main Docu-
ment Object Model (DOM) element document. Similarly,
the controller can be mitialized depending on what applica-
tion 1s being used, for mstance switching from a keyboard to
touch nterface. An “initController” message triggers a
mobile terminal to 1mitialize and load a new or diflerent
controller or simply the current controller 1s reimnitialized
440. During this mitialization process, authentication keys
can be re-1ssued and payment information can be collected
to the user. In one embodiment, a payment request can be
made from a service such as an online payment system or
collect token information using the end-user’s soltware
cryptocurrency wallet account such that the use of the device
as a controller 1s not free.

The exemplary methods for enabling a server-based inter-
face to serve a smart television by the device connect
platform architecture, are shown in FIG. 5 and FIG. 6. More
specifically, FIG. 5 depicts how mevia.js loads and how 1t 1s
used to display a smart television, while FIG. 6 shows the
controller interface that 1s loaded by a user to a mobile phone
to control a smart television. First, at step 500 1n FIG. 5,
initialize for web communication with security credentials
like a key, certificate, and certificate authority occurs. For
example, Secured Socket Layer (SSL) 1s used where a
private key, certificate, and a certificate authority files are
loaded as part of NodelS session for WebSocket Secured
(WSS) transactions. This process starts WebSockets at a
certain port (e.g. Port 3000) secured, and enables the use of
HTTPS-based resources (e.g. load images, CSS, etc). At

next step 505, the URL {for the orniginal application, which

US 12,346,399 B2

15

will be used to interact with the application 1s set and all
resources for the application from the URL (including
HTML, CSS, images, and JavaScript) are retrieved. To help
illustrate, a JavaScript game can be loaded from the original
link, and then as part of the same procedure all other assets
are loaded 1nto the DOM {for a particular HI'ML page. Once
the DOM tree 1s imitialized, the web application for the game
1s modified to add mevia.js, mevia.css, and other elements

that can be added dynamically by using dom.append(..) or

dom.appendChild(..). At step 310, the ‘hrel’ attributes
within the DOM of the application are modified, including
redirecting links or adjusting resource paths. At this step, the
DOM can add the mewvia.js file, mevia.css, and modity all
“href” values required for the application to work. For
example, 11 the game makes references to 1mages, fonts, and
other resources in the original HI'ML are pointing to a local
reference, they can be modified to a server plus path
references. At step 502, another path to mitialize an appli-
cation 1s performed. For example, step 502 involves an
initial state waiting for an application launch command with
a specific application ID. To help further illustrate, an
application via the “LaunchApp” command using the ApplD
or application identifier that could be associated with a menu
to launch another application. At step 315, the application
ID, such as a UUID, and some form of authentication, such
as token or key are set. For example, once the device connect
platform application’s HTML has been updated, a device
connect platform object 1s set to ApplD, UUID, and any
potential authentication requirement (e.g. biometrics, user
and password authentication, certificate-based authentica-
tion e.g. 802.1X, PKI, and other Private/Publick Key
authentication).

At step 522, a command 1s sent to 1mtialize a controller.
For example, an “InitController Command” may 1n fact be
issued by the device connect platform inirastructure and sent
to a particular controller. The mitController command may
load new authentication requirements that are being imposed
as part of the process to load a particular controller. For
example, a controller may be “disabled” until authentication
1s completed. This authentication can be added to the DOM
as part ol a controller as mevia.js modifies the DOM to
evaluate JavaScript macros. The authentication may require
a particular user at a controller level to enter username and
password. In some embodiments, a controller may request a
payment portal and other payment portals include web
widgets, like “Pay now” button, for controllers that require
a method of payment or when a subscription to a particular
service 1s past due.

Following authentication, at step 520, the controller 1s set
with specific parameters. For example, the parameters may
include ‘KeyPad’ and ‘Video” which are types of input for
the application. In some instances, a keypad 12-key pad (O,
1, 2, 3 ... # *) or a Character keypad. To help further
illustrate, the device connect platiorm application or web
interface will proceed to load assets including HTML,
JavaScript, CSS and images for the application being dis-
played into a smart television or any display in general. The
application 1s associated with a controller, and there are
several standard controllers that can be implemented using
HTML. The device that will control the smart television
could be a touch interface that can then be controlled with
a mobile phone for a keypad, a keyboard, a gesture-drive
interface, and other types of one or several controllers that
will be loaded by a user attempting to interact with the
device connect platform application. Once a controller 1s
defined, it 1s set to be initialized, which could have been

10

15

20

25

30

35

40

45

50

55

60

65

16

completed via the “mitController” command that 1s being
sent to the controller at step 522.

Additionally, at step 525, a Quick Response (QR) Code
string may be re-generated using ApplD, UUID, and region
or any other session value and stores as part of “gqrcodeStr”
value. This “grCode” value can also be a “fingerprint” for
the stream being displayed that can be used later for match-
ing this fingerprint with a visual way to retrieve the same
fingerprint and do a match.

At step 530, the quick response code (QR Code) 1s set to
the quick response code string. For example, the QR code
may also be maintained constant for large periods of time,
and at the device connect platform inirastructure, simply
when a HT'TP GET/POST request 1s made with the contents
of the QR code will be remapped accordingly to any other
application, service, or interface that has been directed to.
However, for public places a QR Code might be dynamic
and regenerated after a timeout has been detected. It 1s
known that a web 1nterface can simply show a QR code as
an 1mage 1 PNG, JPEG, or even as a PDF format and that
can be printed by the end-user that 1s owning a smart
television, or dynamically change 1t to be displayed and
shown at the smart television screen.

This QR Code has a link that can have embedded session
identifiers (Session IDs), location 1dentifiers (Location IDs),
and other parameters that are associated with a particular
controller associated with the device connect platiorm appli-
cation screen being displayed at that location. At step 535,
the DOM 1s appended from a URL to the current DOM. For
example, once step 530 1s completed, the output to the DOM
of the device connect platform application 1s updated at step
535. At step 540, a response 1s generated using the DOM of
the URL. For example, once a response 1s requested such
DOM 1s sent as areply to an HI'TP GET request at step 540.
A smart television can be provisioned via a web-page
loaded, with the mevia.js library and/or gestures.js, that
points to the device connect platform’s web application
interface, or can be part of a native application for a smart
TV (e.g., Android television, Google TV, LG’s Operating
System (LG WebOS), Apple television, Samsung’s Tinzen
platiorm) or simply by loading the webpage 1n the televi-
sion’s web browser.

FIG. 6 demonstrates how 1mitController and a new con-
troller 1s loaded 1nto a mobile device or any client computer
that can load HIML web pages. At step 600, an HT'TP server
1s 1nitialized with specified security credentials (e.g. key,
certificate, and certificate authority). For example, the con-
troller requires the imitialization of the server including
certificates, private keys, and certificate authority bundled
are loaded. At step 610, the application 1s loaded (e.g. with
the provided ApplD, UUID, and authentication details, e.g.
authentication context). For example, the device connect
platform context 1s loaded as part of device connect platform
application and the LoadApp API that includes a UUID that
can be generated as part of the imitialization process, ApplD
that maps applications to resources, and any authentication
object that needs to be validated or has been validated by a
controller accessing a Mevia application. At step 630, the
controller’s DOM or Document Object Model 1s retrieved
from the device connect platform application. For example,
the controller’s dom object 1s mitialized with HIML, CSS,
images, and other JavaScript including loading the ges-
tures.js, gestures.css, and other files required to load the
controller. The libraries that handle events, such as touch-
start, touchstop, touchend, keydown, enter, swipe left, and
swipe right are part of the gestures.js file. All of this process
1s part of step 640, the meviaverse object generates a

US 12,346,399 B2

17

response 1 HITML, JavaScript, CSS, and other resources
based on the controller’s DOM. In this example, the con-
troller loads gestures.js, gestures.css, and other related con-
trollers, for example a 12-digit keypad Controller, a Joy-
stick, or a Camera. As a result, then a user loads the

controller as part of an HT'TP response that was generated 1n
the previous step 630 and loaded at the client’s device DOM

at step 650 which was generated by HI'TP GET or POST
request that was 1ssued to retrieve such controller (e.g.,
HTTP GET/mt/controller?’keypad=12-digits. In other
words, what gesture.js does 1s to create SocketlO commands
and receive all types of events that are sent to the Mevia
application target displayed at a particular smart television.
The device connect platform can create logins, screens, and
interfaces for payments, door control, videoconferencing, or
bundles of applications that are displayed on smart televi-
sions or other displays. Also steps 600 to 650 can be
delivered to a mobile phone or tablet upon scanning a QR
code associated with a particular smart television or display,
as a response of the HT'TP or HI'TPS request to retrieve the
appropriate controller e.g. https://app.mevia.tv/keypad. This
page renders via the response command, all libraries, 1cons,
images, and structure for the particular controller. By virtue
of this controller, other controllers can also be loaded, for
example, a camera controller can be generated by embed-
ding into the QR Code https://app.mevia.tv/camera/, and the
camera send WebRTC video to a server where the video will
be recognized using Computer Vision tools or deep learning
(e.g. LSTM Networks) to load another controlled based on
the camera video 1nput.

At step 655, 11 the authentication check 1s successiul, then
the credentials are validated. For example, the controller 1s
displayed provided that authentication 1s known or a user

has paid for accessing a controller, e.g. video game arcade.

At step 645, events from the DOM are used to update the
DOM on the controller to reflect user interactions. For
example, once authentication has been completed and a user
simply operates and interacts with the controller and
receives DOM events, and updates the DOM accordingly. To
help further illustrate, switching a palette from red to
magenta, will require a DOM operation to change color from
“red” to “magenta” in the CSS style dynamically. At step
6235, the device connect platform 1s 1n a wait state until the
controller initialization process begins. For example, the
gestures.js library expects as a command, at least “InitCon-
troller” that enables a new controller depending on the
experience. In some embodiments, a user may “Tap” or
“Double Tap” on an application 1con (e.g. a menu or shider,
and launch a game) by creating an event and sending a
message.command="Launch,” message.appid=ApplD or
message.uuid=UUID that 1s related to the particular i1con
selected on the screen. A message.command “Launch™ or
“Start” may do two things, for example at step 502 1n FIG.
5 1s waiting for commands from the application, and load
into the mstructions (e.g. mevia.js) a new page using a web
redirect to anew “URL” or modity the DOM, by replacing
document.body html DOM structure and reload 1n HTML
the object called document.body and other HTML elements
including document.head, and other parameters with the
HTML from the other web application being loaded.

In some embodiments, some applications may require
authentication and, in that case, at step 620, the 1mitCon-
troller command 1s waited by the controller via gesture.js.
For example, a QR code 1s generated with a specified
timeout value for an authentication process. As part of FIG.
6, a QR Code can be displayed on screen for a few minutes
at step 620 or at step 622 the generated QR code can be

10

15

20

25

30

35

40

45

50

55

60

65

18

printed or displayed as part of a <DIV> or DIV HTML Tag
that overlays over the Mevia application that i1s being
displayed on the smart television or display under control at
step 624. In some embodiments, at step 660, a payment may
be validated 11 a payment 1s needed.

Authentication 1s optional to load or not any controllers
using FIG. 6 at step 660, where ta payment validation may
be required to load a particular controller. An scenario where
this 1s useful will be at a parking garage, where the controller
to open/close the gate will not be loaded to the user unless
a payment has been made upon entering previously with a
keypad controller, a vehicle’s tag number. Indeed, the sys-
tem allows a user to at a parking garage to control an LCD
screen via loading a 13-digit keypad controller in their
phone, and then converting the phone into a NFC reader
(e.g. Apple Pay) to submit a payment associated with the
TAG entered.

Controllers 1n the Device Connect Platform

As shown in FIGS. 7(a)-7(c), there are three types of
communications with SocketlO, a) using standard web
sockets 1 FIG. 7(a) where controller 705 communicates
with the device connect platform infrastructure 700 and
sends commands and displays to the Internet of things (Io'T)
devices 720 and to smart televisions 7135 or other displays
that could include other tablets, LCD screens, and devices at
710. At FIG. 7(b), WebRTC can be used instead to establish
a peer-to-peer communication between the controller 730
and the display 735 while the device connect platform 1s not
in charge of routing packets from the controller device to the
target display. FIG. 7(c) shows how a controller uses
WebRTC but device connect platform 740 creates 1P (Inter-
net Protocol) Tunnels 750 between the controller and a
display, where the controller 745 sends messages and events
to those displays 755 using WebRTC over tunnels. These
tunnels could also be GRE, GTP, IP in IP or other VPN
tunnels that encapsulate IP trathic from one server to the
next. WebRTC 1s a technology that allows Web browsers to
stream audio or video media, as well as to exchange random
data between browsers, mobile platforms, and IoT devices
without requiring an intermediary. In some embodiments,
the tunnel server 1s done via STUN/TURN servers on the
internet (for example stun.eglacorp.com) and by setting
those as part of the WebRTC service 1f needed.

FIGS. 8(a)-8(c) show a use case on how a device connect
platform application 1s launched by a user. First, at FIG.
8(a), a user 800 has scanned a QR Code 815 underneath a
smart televisions 805. In FIG. 8(a), a slider 810 depicts
several applications called Mevia App 1, Mevia App2,
Mevia App3 and others. At FIG. 8(a) the user may proceed
to execute “Swipe Right” 812 and a game application 814 1s
highlighted in FIG. 8(b). The only communication channel
between the phone and the smart television 1s the Internet.
As such, a user may proceed to “lap” over the button
associated with game application 814 that 1s also highlighted
on the smart television as shown in FIG. 8(¢). In some
embodiments, the game web application may be written 1n
JavaScript and run on a browser and has been modified to
include mevia.js.

As a consequence, the mnitController command 1s 1ssued
to switch from a touch screen to a game controller 825 and
allow a user to play the game application 814. To exit game
web application, a user may press any part of the screen with
“long tap™ that 1s mapped to “Exit” and be returned to the
previous menu application. As such, a new mitController
command and LaunchApp are 1ssued and the previously
used slider that was initialized was loaded as FIG. 8(c). At
all times, any user can still send standard commands using

US 12,346,399 B2

19

smart television’s remote control 830. In some embodi-
ments, optimizations may be implemented for example
using Redis or other caching modes, as well as handling
optimized ways to load/unload applications. Redis can be
used as a message broker to distribute and exchange events
and messages 1rom all controllers to displays, saving
images, caching JavaScript files, and add caching to the
device connection platform.

FIGS. 9(a) and 9(b) shows another sample of a device
connect platform application, a drawing program. A user can
swipe right or left and find the NFT Lab application 905 on
the screen. Upon selecting or generating a “Tap” 900, the
DOM objects are updated at the smart television display and
an “mtController” command 1s delivered to the mobile
terminal where a “palette” controller 915 1s then loaded into
the mobile device or tablet. Once a palette controller 915 has
executed (e.g., window.onload() method), touch events are
converted to messages, such as message.evt 1s touchstart at
certaimn (X, y, z) coordinates, touchmove, message.evt 1s
touchend to a certain X, y, z position 930. For some cases, z
might be equal to zero, as most user iterfaces are 2D, while

10

15

20

20

value. In some embodiments, the controller could be a game
controller 1110. Controllers may also include haptic feed-
back which could be part of the InitController command
message, by adding an asynchronous message HapticCon-
troller command that can then be delivered to the control to
simulate vibrations or haptic feedback on the mobile phone
or tablet. As a result, game messages are generated and sent
to the application being controlled 1106, for example Up
key, Down key, and respective timestamps. Game develop-
ers can also assign sequence of keys to movements or
macros within a game that are generated by the device
connect platform server’s macro converters 428 1n FIG. 4. In
some other embodiments, an Augmented Reality Headset
(AR) device will be used to handle head gestures and 1ts own
controllers to create virtual overlays of those controllers that
will appear 1n the field of view of the AR headset.

For example, a developer may implement a function
called “abouttheSame()” that returns TRUE as a user has
tapped approximately close to the position of between a
touchStartX and touchEndX as well as touchStartX and
touchStartY such that:

function abouttheSame(a,b, thres=20)
If Math.abs(a-b)<=thres then true else false;

if (abouttheSame(touchstartX, touchendX, 25) && abouttheSame(touchstarty,
touchendY, 25)) {
if count_ number_of taps=1 within a delta_ time of 500ms then Tap;
1f count__number_ of_taps=2 within a delta_ time of 250ms then
DoubleTap;
1f count__number__of_taps=1 within a delta_ time of 3000ms then

Longlap;

if (mouse__move) reset__all__timers()

h

for those where 3D user interfaces are created the z-axis will
not be zero. As shown in FIG. 9(b), the user’s interaction 925
with palette controller 915 i1s displayed on smart television
920. In some embodiments, QR code 910 may be used to
prompt the loading of palette controller 915 on a mobile
device.

Each smart television, display, or sensor 1s associated with

a QR code that 1s used to load the controller. As shown 1n
FIG. 10, a database with a list of QR Codes 1001 are stored

in a database and application 1dentifiers 1005 and applica-

tion names, and UUIDs or sequence of UUIDs 1010 are
mapped to each application name 1n use. A loaded applica-
tion may not require certain types of authentication 1015,
such authentication may include using biometrics through
the mobile video controller using WebRTC or using API’s
navigator.mediaDevices.getUserMedia which can be used
for biometric authentication. Fach QR code may also be
associated to an application URL (which 1s served by a
webserver eitther using HI'TP or HT'TPS protocols) or a
device connect platform interface 1020 that may include
mevia.js, mevia.css, and other resources to communicate
events to the applications loaded via the QR code.

As indicated, there are several types of controllers that can
be loaded individually or as part of a bundle of three or more
controllers. FIG. 11 shows the types of controllers that the
device connect platform supports. A touch controller 1100
provides touch events as well as simulated mouse events to
the device connect platform applications. The touch events
are known and defined by HTMLS5 specifications; hence this
controller can emit timestamp, touchstart, touchend,
touchmove 1102 or a combined set of events can turn 1into a
command as “Swipe Right” 1104, together with a timing

35

40

45

50

55

60

65

The exemplary pseudo-code indicates that a Tap, Double-
Tap, and LongTap can be detected by tracing the events and
position of the finger on screen. The thresholds can change
depending on the application and 1n some cases game
developers will know that those events can be detected using
digital signal processing filter or with training using machine
learning models as presented 1n FIG. 11.

Other controllers that can be used with the device connect
platform and include a camera or capture device 1120. For
example, once a picture has been taken a base64 1mage/png
or image/1pg 1122 1s then submitted as part of the messaging
system to the device connect platform. Some other messages
may include bar code information. If that 1s available locally
on a device or has been made available as part of the
controller interface by using a BarCode SDK from Dynam-
soit or could be performed directly by the web application
running meva.js.

As depicted i FIG. 11, camera 1124 and microphone
1126 can be used to capture live camera feeds, camera stills,
and audio generated from the mobile device or tablet. These
controllers can emit as messages, with sequence of 1mages
captures via WSS or WebSockets that can include audio
buflers or 1mage stills from the camera. In other embodi-
ments, the camera and the audio/microphone can be deliv-
ered via WebRTC 1138 that can either be natively tunneled
via an IPinIP, IPSec or any other tunnels created by the
device connect platform or use a standard STUN/TURN
server (e.g. stun.eglacorp.com). This information may be
collected by the controller via the “initController” command
or created real-time depending on how the device connect
platform application 1s being controlled. In the event that
video 1s not present, the message.evt will describe

US 12,346,399 B2

21

“StreamAudio” event and a remote WebRTC socket 1s
opened to interact with an audio tag at the receiver, for those
voice-only applications (e.g. walkie talkie, push to talk) for
example. In some embodiments, for multimedia, audio, and
video applications, a “videostream, audiostream™ can be
composed for example using WebM encoder for video and
Opus encoder for audio, using Websockets or WebR1C
PeerConnection JavaScript API 1128.

In some embodiments, video and audio codecs could
require additional transcoding or encapsulation in other
messages, and could include emulation as a Universal Serial
Bus (USB) device for native applications or non-web appli-
cations that expect a USB 1dentifier (USB VHCI Root Hub)
tor which a USB device emulator that wraps WebSockets or
WebRTC traflic for those native applications requiring it.

Another controller that can be used with an application 1n
the device connect platform that 1s a “3D Gesture” generator
that emits the “accel” event 1140 and accel_x, accel_y,
accel_z elements. In general, a timestamp can be added to
the accel_x, accel_vy, accel_z payload, and the sampling rate
for these events 1s set by the InitController command, but 1t
will depend on the device being used if time intervals are set
to zero, and time delays are required to compute gestures.
This function can be implemented 1n HITMLS browsers by
1ssuing the windows.DeviceMotion event that can then be
captured 1n a callback as follows, window.addEventListener
(“devicemotion”, updateData) where:

function updateData (e)
var acc = e.acceleration || e.accelerationIncludingGravity;
accel.push({t:delta_ time, x:acc.X, y: acc.y, z: acc.z});
if len(accel) == N:
XMLHhttpRequest(accel);
accel=[|

The acceleration information i1s then captured in the
“accel” array that contains delta_time or time 1n millisec-
onds between samples, accel.x, accel.y, and accel.z are
accelerator values of X, y, z coordinates that 1s then for-
warded to a neural network or any machine learning inter-
faces to be compared with learning data as shown 1n FIG. 11.

As such, gestures like UP, DOWN, SWIPE RIGHT, SWIPE
LEFT, TAP, EXIT, and other can then be learned and
mapped to a particular user’s profile or a generic user profile
with trained information stored 1n the device connect plat-
form.

All those message.evt commands are sent over to device
connect platform to the content routing module (depicted 1n
FIG. 21) that determines what the appropriate route for the
packets 1s and events generated from one controller or
several controllers required for a particular application.

Other controllers could be a USB card reader 11350
emulator that can be connected to a mobile device 1154 (e.g.
stripe reader). In those cases, custom messages can be
created and sent via message.evt traflic to the content router
and translated appropriately to handle JavaScript messages
or events to be sent to a remote website. For example, Near
Field Communications (NFC) could read an NFC card and
that information sent via a message.evt value with an NFC
card payload, which could be translated as a keyboard set of
commands or classified as custom event with a particular
JSON payload that can be made available as part of the web
application interface.

In general then, the device connect platform i1s depicted in
FIG. 18, as a series of controllers 1803, a system where a

controller server with HI'ML 1810, a web HTTP server

10

15

20

25

30

35

40

45

50

55

60

65

22

1802, gestures.js, and AI/ML to handle the controller learn-
ing and bundles. The Messaging queues 1830 contain all
message.evt, message.x, y, z coordinates, and all other
messages used for gesture control devices, and other bundles
or series of controllers. 1812 and 1808 represent the web app
ingest, that can also include Al and machine learning as part

of the MEVIA application or Mevia server block 1816 as
well as recetve commands that can be translated from the
original messages originated from the controller to
JavaScript commands 1825 are dependent on the HITML
used by application 1812. In other words, the messages that
originate the controller are then converted to mouse events,

JavaScript events, and WebRTC/Websocket traflic depend-

ing on the configuration used and the type of application
loaded. The content routing 1845 element 1s responsible for
capturing all the messaging and events, “raw”™ from the
controller and 1dentifying what needs to be converted to and
managing other router functions for WebRTC and Web-

Socket video and audio trathic that 1s then mapped to IP
tunnels and managed by a STUN/TURN server 1820.

FIG. 19 shows the system managing two or more device
connect platform applications. FIG. 19 includes a controller
server 1900 for a game controller and 1ts associated Meviapp
server 1902. This URL 1s retrieved by the screens 1904 and
contains the Mevia application and 1s then controlled from
controller server 1900. As shown, message.evt or raw events
are sent to the controller, while the controller can receive an
initController command 1910. The heart of the system 1is
depicted at routing component 1940, where all the routing
QR codes, Application Identifiers, UUIDs, databases, and
routing parameters are configured. As a result of the pro-
cessing in routing component 1940, events are converted to
commands or WebRTC/Websocket streams that are then
retrieved or pushed via HMTL and JavaScript, CSS, and
other media files 1906 and message.commands 1915 to the
Mevia App server 1902 and retrieved by clients at screens
1904. Clearly, many of these message.evt are translated to
message.commands 1915, and handled appropriately by the
Mevia App server architecture. Multiple controllers can then
be used and combined a game controller 1912 and a camera
1920.

Real-Time, Streaming, and Videoconierencing Applications
in the Device Connect Platform

For applications requiring the use of a video and micro-
phone controller, navigatormediaDevices.getUserMedia(..)
may be required for authorized access i FIG. 12(a) and
FIG. 12(b). Once device authorization 1s permitted by the
user, the controller then provides gesture.js with access to a
WebSocket 1222 or WebRTC streams 1224. The same
routing path that 1s followed by message.evt events, ren-
dered by the page that includes gestures.js and associated
JavaScript to establish a WebRTC session or deliver via
WebSockets, images, audio buflers, or data. One objective
with FIG. 12(a) 1s the creation of an emulated USB interface
to a web application that loads the video and audio via an
emulated web client interface. In this embodiment, the
Mevia App RTC Server 1218 connects via the emulated web
client interface. The “Emulated Web Client to MEVIA APP”
module 1216 can then percerve commands from a controller
1225 (e.g. message.evt) as USB HID interfaces, CAMO,
CAMI1, CAM?2 1212 or a USB WebCam Emulator 1208 that
1s presented to the emulated web client as a CAM EMU
driver. The USB WebCam Emulator 1208 encapsulates a
USB WebCam descriptor (e.g. bDeviceClass, bDeviceSub-
Class, and specialty interface association as bFuncitonClass

14 for Video). The data or payload of the connection created

US 12,346,399 B2

23

by the USB Driver 1s then WebSocket or WebRTC tratlic
generated from the controller 1225.

Some other web applications may use mevia-webrtc.js
interface 1230 as well as meviags 1228, as those web
applications have implemented WebRTC natively. In those
cases Mevia-WebRTC will write directly to an audio tag or
video HTML tag that i1s part of the application. In other
words, 1n this embodiment, a Mevia App does not need to be
modified at all and simply an emulated web client connects
to a Mevia App server that contains the application, which
could be local to the device connect platform or could also
be remote and hosted at a different domain. The emulated
web client web application then becomes the client and
Mevia app server 1s what 1s displayed on the television.

In some embodiments, the Mevia App RTC server 1218
may not properly display contents to a particular user, for
example when the Mevia App 1s not designed for smaller
screens, or any other potential drawback that may include
smart television’s Webkit browser 1s unable to process or
display certain aspects of the application. For those circum-
stances, a simple “User Agent” inspection from the smart
television’s HT'TP request may be needed and the process in
FIG. 12(c) will be able to be used 1n all televisions regardless
of compatibility 1ssues with the their web rendering engine.
As shown FIG. 12(¢) depicts the use of a different Mevia
App server display that could include a simple html such
that:

<html>
<body>
<canvas 1d="meviaapp’></canvas>
<script>
Player = jsMpegPlayer(“wss://ipaddress:8001/meviapp”,
“canvas’: document.getElementById(“meviaapp™);

h

</script>
<script type=""javascript” src=""jsmpeg-min.js’ >

FIG. 12(¢) shows that component 1280 includes
FFMPEG encoder for mpeg2video and mp2 audio, for a
Puppetter’s based of captured screens of all HIML pages
shown as a result of all messaging between Mevia App
server, mevia.js, and mevia-webrtc.js. As an example, Pup-
peteer may write all captured JPEG 1images and pipe them to
an FFMPEG process to encapsulate them as a MPEG frame.

Capturing Stage - Video:

Capture image in JPEG or PNG from Mevia App Server HTML
Save Images at Local Directory

Write 1image to pipe:0

Capturing Stage - Audio

Capture audio from Mevia App Audio Channel

Redirect audio as http mp3 stream

At FFMPEG

Take pipe-in from Capturing Stage

Take audio from http3 Capturing Stage

Generate mpeg2video and audio and serve it as Web Socket or use NGINx with

rtmp or write HLLS to Apache web server
Write to pipe:0
At Websocket Server - websocket IP address and port XYZ
Read from pipe:0 and write all bullers to a websocket for Mevia App
Display
Wait for WebSocket Requests.
At MEVIA App Display Page
Point |sMPEG to wss://Websocket IP Address with Port XYZ

5

10

15

20

25

30

35

40

24

Socket server 1285 and a USB or Web RTC mapper 1288
component determines the proper web server to use as a
response.redirect(. . .) or a redirect command 1s 1ssued to
the smart television display to point to the display server
1290 with that sSMPEG or JavaScript MPEG (e.g. jsmpe-
g.0org) project can draw to a canvas. Similarly, an 1mple-
mentation can be done with RTMP, HLS, and Low-latency
HLS for these implementations, a Web Socket server might
not be required and an HTML tag with <wvideo
source=" . .. > mstruction will be used 1nstead of sSMPEG
player. The WebRTC mapper 1288 defines the location

where the Mevia App Server Display 1290.

The USB or WebRTC mapper 1288 1s shown in FIG.
12(c). This module shows how a particular source IP
Address and USBID 1s mapped to a destination IP Address
and a USBID that 1s being emulated by the USBIP Daemon.
USBIP 1s an existent component of Linux and Windows
machines (http://usbip.sourceforge.net). The USBIP com-
mand allows attachment of a remote USB device with

certain USB Identifier located at remote machine at “IP
Address 1,” with another USB IP daemon located at “IP

Address 2,” for the machine at “IP Address 2,” the USB
device 1s local, and all transport are done over an internet
link.

However, as the video trathc from WebRTC Stream 1224
or WebSocket 1222 1s delivered from the controller as
real-time streams. Those streams are handled by the device
connect platform at peer points 1206. As the video and audio

traflic 1s received by the WebRTC Peer Connection, for

example the IP Address used by the controller server is
1.1.1.1 while the IP Address of the client i1s loaded at

controller 122515 1.1.2.122, the connection with WebRTC 1s
made at a local server within the device connect platform.

As such an HI'ML Tag with <video id="remote™> at the
controller, <video 1d="*‘local” 1s then remote at the device
connect platform™>. As part of the configuration of the
WebRTC interface, a STUN server 1250 could be set or the
device connect platform could have created an IP tunnel
between the controller server and the server at peer points
1206. An expert i the art will know that a STUN/TURN
server will proceed to achieve a similar result as an IP
Tunnel. As such, at the peer points 1206, the resulting video

In essence, FIG. 12(c¢) shows that audio and video are g5 and audio feed from controller 12235 1s then put in packets or

encapsulated in mpeg2video frames at component 1280.
Those video and audio frames are then serviced by Web-

frames that are then delivered to the USB Web Cam Emu-
lator that 1s collocated at the peer points 1206.

US 12,346,399 B2

25

WebRTC RTCPeerConnection()

26

At the end-point of the RTCPPeerConnection all packets with video and audio are

bufifered
Packets are written to pipe:0
USB WebCam Emulator()

The USBIP interface i1s mitialized to 1ssue an USBoverIP interface
Descriptors for a MEVIAWeb Camera are initialized

Packets from the WebRTC Peerconnection are written to the USBWebCam
Emulator

If transcoded is required, packets can be first passed to FFMPEG for transcoding

to H.264 video and AAC audio.

As the network traflic with video and audio from the USB
WebCam emulator 1s encapsulated in USBIP traflic with
payloads with video and audio must be properly routed to a
particular session or a Mevia App RTC server 1218. As such,

a USB Virtual Router 1200 1s used and a routing table 1202
will include a destination IP address and a Source IP
Address. The USB Daemon, loads the information from the
USB virtual router 1200 and 1ssues an “USBIP attach”
command to the IP Address where the USBID containing the
web camera emulation 1s located. For example, the destina-
tion IP Address can be executed as a remote docket container
“run command” or if a particular server already exists an
“SSH” command can be executed from USB Virtual Router
1200 to the USBIP daemon server 1210. For example, from
the USB virtual router 1200, “ssh -u device connect platform

Dest_IPAddress:/usr/bin/usbip-attach Source IPAddress”

As a consequence, the USBIP daemon server 1210 must
reside within the same server as the Emulated Web Client to
MEVIA APP module 1216 emulated web client to MEVI-
AAPP, as a browser instance using a web browser will then
connect to MEVIA App Server. The MEVIA application
server indeed expects that the client may render a tag HTML
video as local and remote for other clients connecting to the
MEVIA App Server. Since the smart display 1s expected to
visualize the results of the Emulated Web Client to MEVIA
APP module 1216 or visualize copies of what 1s being
observed by the Mevia App RTC Server 1218 into client
1233 or render a video and audio stream from Mevia App
RTC Server 1218 into client 1233.

The device connect platform allows for use cases: a) in
order to visualized MEVIA APP 1216 results from connect-
ing to MeviaApp Server, the mevia-webrtc.js and mevia.js
1228 1s instructed to copy the DOM from the Emulated
Client to MEVIA APP 1216 1nto the DOM of client 1233,
including copies of all video streams at MEVIA APP 1216
to canvas objects in client 1233, or creating a WebRTC
channel with client 1233 with screenshots from MEVIA
APP 1216; or b) proceed as FIG. 12(¢) where the FFMPEG
and puppeteer also executes as part of MEVIA APP 1216
and proceeds to generate the screens shots to be visualized
by the MEVIA App Server-Display 1219 instead of the
MEVIA app server 1218. The Mevia App sever simply
displays what 1s shown at display server 1290 or a stream to
a canvas using MPEG2video and mp2 audio or HI'TP Live
Streaming (HLS). Observe that mevia.js 1s then loaded as
part the emulated server and not as part of the MEVIA App
Server.

In other words, mevia-rep.js 1228 receives DOM object
values from MEVIA APP 1216 or uses WebRTC or Web-
Sockets to copy DOM from MEVIA APP 1216 into what 1s
being displayed on client 1233 or simply streams a real-time
version of MEVIA APP 1216 via ;sMPEG that 1s processed
by component 1280 mpeg2video and served as rendering.
The advantage of using display server 1290 rendering as

15

20

25

30

35

40

45

50

55

60

65

opposed to DOM object copies 1s that any smart television
display that support CANVAS will be able to render and
handle the results from MEVIA APP 1216. Clearly, the use

case for this embodiment 1s the creation of a web-based
videoconierencing tools that loads USB-cameras or USB
devices that may require a particular support from an
operating system. Therefore, WebSocket server 1216 can be
implemented as a Windows client, Linux, or headless,
depending on the video conierencing software.

The same 1s true for other USB-based interfaces, where
native drivers and assets are expected to be loaded by the
operating system or kernel modules.

Assume that a particular videoconference does not need
USB cameras. FIG. 12(5) shows how to create a native
solution that relies on mevia-rtc.js protocol and similarly to
what 1t was depicted on FIG. 12(a) but instead of emulating
USB over IP, simply captures the WebRTC trathc and
WebSocket Traflic and 1s directly forwarded to the video
coniferencing application.

As shown WebRTC 1234 depicts authorization and access
via gesture.js of navigator.mediaDevices.getUserMedia and
the mstanton of WebSocket 1222 or WebRTC 1224 objects
as part of a controller server HTML page.

A similar procedure will be used for any other USB
interfaces for example, USB-based displays, chargers, key-
boards, AR headsets, etc.

As such, an ICE Server or STUN/TURN server 1250 1s
setup to handle RTC communications. Siumilarly, the device
connect platform can create an IP Tunnel to achieve point-
to-point links between different endpoints, for example an
SSH tunnel between a controller server to the Mevia appli-
cation server or the Emulated WebRTC proxy 1246. Observe
that a WebRTC-to-WebRTC Mapper to WSS entity 1240 1s
shown.

This server can forward WebRTC traflic directly to the
emulated WebRTC proxy or can be captured by the WSS to
create a WebSocket interface where the video and audio
traflic 1s exchanged. In other words, WebRTC-to-WebRTC
Mapper to WSS entity 1s the peer for the WebRTC connec-
tion and as a peer then it serves the content as part of
WebSocket server at port 8000. As a recipient of the peer,
WebRTC-to-WebRTC Mapper to WSS entity 1240 can
retrieve the SDP session for each of the peers and can copy
back and forth the WebRTC traflic to other peers, or simply
bufler the WebRTC tratlic to be serviced as a WebSocket
traflic 1244, for example wss://server:8000/sdp1 and wss://
server: 8000/sdp0.

The contents from, the WSS stream 1252 could be a
WebSocket stream and WebRTC 1254 could be a WebRTC
stream 1254 with a peer at client 1233 were the mevia-rtc.gs
1s loaded. Clearly, the STUN server 1250 could be placed as
part of the WebRTC tratlic from WebRTC-to-WebRTC Map-
per to WSS entity 1240 to client 1233. Another embodiment
could be Emulated WebRTC proxy 1246 that could load

US 12,346,399 B2

27

mevia-webrtc.js 1248 and the WebRTC peer could be part of
Emulated WebRTC proxy 1246. Clearly, as Emulated
WebRTC proxy 1246 loads HTML from the video confer-
encing application at Mevia App RIC server 1218 and
WebRTC-to-WebRTC Mapper to WSS entity 1240, proper
Cross Origin Resource Sharing (CORS) headers must be
implemented to be able to retrieve WebRTC ftraflic from
Mevia App RTC server 1218 and WebRTC-to-WebR1TC
Mapper to WSS entity 1240. As depicted betore, the Mevia
application server user interface can be rendered a) natively
with WebRTC and video tags 1246 or b) rendered using FIG.
12(c) implementation with a streaming canvas and using
1sSMPEG s libraries for instance.

This 1s a similar scenario as 1 FIG. 12(a), observe that
mevia-rtc.]s and mevia.js are used for the emulated WebRTC
proxy 1246 to MEVIA app RIC server 1218. Let’s assume
that a WebRTC application has been built and does not
require USB cameras and only does streams, for example
streams Irom television channels and a user’s camera with
audio. In this scenario, remote video 1232 and local video
are presented as WebRTC visualization methods using a
“video tag”. The remote video comes from other streams
sources, while the local video 1s the source from controller
1225. In this scenario the Mevia application RTC server
1218 receives WebRTC traflic from the Emulated WebRTC
proxy that functions a peer to Mevia application RTC server
1218, 1n some embodiments and the following peers can be
established. We identity, Peer0 at the mobile phone or
controller 1225, Peerl as the WebRTC Mapper device Peer,
Peer 2 at the emulated Web RTC proxy 1246, and Peer3 at
the actual Mevia App RTC server and all other peers
attached to that WebRTC server (e.g. one to many confer-
encing).

Mobile Phone to WebRTC Mapper
PeerQ - Peerl
Web RTC Mapper to Emulated Web RTC Proxy <

Smart television
Peer 1 - Peer 2

Emulated RTC Mapper to Clients attached to Mevia App RTC Server
Peer 2 - Peer 3

An objective could have been to link Peer0 controller with
Peer3 clients, such that all web clients connected to MEVIA
app RIC server can see Peer(’s stream.

However, recording capabilities, transcoding, and the use
of FIG. 12(c) embodiment would have been disabled and

will be bypassed by this configuration, but clearly PeerO
source can be displayed as part of all HTML wvideo tags
labeled as “remote” 1n all clients at remote locations that are
part of the streaming session.

Hence, the point of view for the smart television 1s

position right at the “emulated WebRTC proxy server 1246
to Mevia App server where the mevia-rtc.js and mevia.js are
loaded, not the Mevia App RTC Server at 1218. In this
scenario, an HTTP GET request was made to the Mevia App
RTC Server and all canvas, video and/or audio HI'ML tags
with different 1dentifiers are loaded into Mevia App server.
The local video tag or the reference to controller 1225 source
1s shown as a peer that 1s being processed by WSS enfity
1240, STUN server 1250, and WSS stream 1252. All other
peers and sources including remote video 1232 can be
handled by STUN server 1250 to enable proper signaling
under NATs or firewalls. Hence, an HT'TP GET request
made by the Emulated WebRTC proxy 1246 1s what needs
to be displayed by the smart television. This 1s the URL that

5

10

15

20

25

30

45

50

55

60

65

28

will also receive all message.evt commands and all associ-
ated events from all the controllers that can be associated
with a particular MEVIA Application. However, expert in
the art will know that another session can be established to
Mevia App RTC server directly and see all peers as an
observer, for istance as a webinar attendee and depending
on the smart television configuration and what type of role
a user has been playing different URLs can be rendered for
those using the application.

As a Websocket stream can be also used as part of the
delivery of WebRTC video and audio, or data content. In this
particular scenario, the Mevia App RTC Server 1218 could
simply bypass the emulated RTC server and load video and
audio directly into local video the wss:// tratlic from Web-
Socket tratlic 1244 directly. Let’s say that video and audio
are retrieved as video frames that are rendered 1nto a canvas
and an HTML, audio tag or directly into an HI' ML video tag.
Under this scenario when only WSS streams are used, the
point of view 1s then client 1233 not Emulated WebRTC
proxy 1246, or the contents from Mevia app RTC server
which may also include other peers that are part of the
videoconference event.

In the event that a canvas 1s updated at the Mevia APP
RTC server using the wss://traflic from WSS entity 1240
(e.g. wss://server:800/sdp1). Under this scenario, a pre-built
application by the device connect platiorm might be
required and used as a recommended practice for certain
application developers creating videoconferencing applica-
tions for the device connect platiorm.

Another application 1s showing multiple television
streams, camera streams, and other sources form other
videoconierencing servers or over-the-top servers that can
transport content over the WebRTC streams or WSS streams.

Point of View to Show on

In any of these two scenarios, FIG. 12(c¢) can be used to
handle rendering of either scenario by creating a sequence of
screen captures and proceeding to mix the audio from the
resulting web client as 1t 1s being perceived as mpeg2video
and mp2 audio or could be encoded using the H.264 video

codec and for audio mp3 or AAC codecs embedded 1n a
transport stream (1S) for HLS or Low-latency HLS (HT'TP
live streaming) environments.
Integrating a Windows Machine into the Device Connect
Platform

Thus far, web applications that are rendered by a smart
television level with web-based widget has been presented.
However, the device connect platform can also be populated
with operating systems that can be controlled using the
controller systems presented in FIG. 11 and a windows VM
or server can be made part of the device connect platform.
For example, Windows applications that may include native
OpenGL, legacy DOS applications, Microsoit Oflice Native,
Computer Aided Design (CAD) programs, Adobe tools, and
many other high-computing native applications that run as
an executable on windows can be rendered and controlled
via the device comnect platform. In FIG. 13, a native
application 1304 depicts a native application for Windows

10 or 11. In this embodiment, a USBIP module 1307 can be

US 12,346,399 B2

29

used to handle all USB-related devices such as cameras and
microphones are interface with the controller server 1320.
With reference to FIGS. 12(a)-12(c) and specially the USB
Virtual Router 1200, the connectivity with USB Web Cam
Emulator 1308 1s possible. Camera and audio from a con-
troller can be sent over to a virtual windows terminal 1304
and used as 1t was natively functioning.

The main requirement 1s loading as a Windows Service or
native application, the Mevia Legacy Controller Application
1306 that 1s 1n charge of converting Message.evt commands
from controllers shown 1n FIG. 11 to WM_* messages from
windows and use the Windows API system. The Windows
Messaging Router 1310 1s in charge of mapping from
several controllers Windows-based messages located to one
or many windows machines or devise that comply with
Windows messaging. For example, a TAP message from
device connect platform may correspond to WM_CLOSE 1f
the “X”” button 1s located at 100,100. Another event that can
be converted are mouse events, by converting touch events
at the phone to WM_MOUSEMOVE, x, vy for example that
are received by the 1306 device and sent to a Windows
procedure via the SendMessage API interface. As sounds
and screen captures are taken, those are sent using the
X1lgrab interface from tools such as FFMPEG 1302,
observer that Puppeteer 1s no longer necessary as the main
objective 1s to render Windows native applications not
HTML-based applications. Web socket server 1300 1s cre-
ated at IPAddress:8001/oflice for instance and that Web-
socket or Websocket Secured (WSS) trathic 1338 can then be
retrieved by Mevia App server 1322 and displayed via target
canvas 13235. Clearly, the controller server 1320 will process
all gestures from the grid 1330 for mouse emulation 1333
turned on and a keyboard 1335 for typing commands. As
shown 1 FIG. 13, a WebRTC peer mapper server 1305 can
also retrieve the WebSocket Server 1300 content.

Observe that a server and client computer are only defi-
nitions used by HI'TP and other protocols, but in some cases
a server could be a single purpose computer and the client
could be a cloud-based system. Hence, CPU, memory size,
number of clients are not limitations for defining a sever and
a client.

As shown WebSocket routing 1s then needed by the device
connect platform to determine what Application IDS and
what UUIDs are mapped to what particular destination, if
those applications are executing a user’s session, switching
from application to application will required just updating
the target canvas 1325 or target div that a player such as
1sSMPEG. For example, a user might have run Oflice 1n one
particular server and may run Skype in another server, or
both could run 1n the same server 13135. However, a user may
switch from Oflice to Skype by simply switching URLs and
reloading the player being displayed at the player 1322.
Controller and Smart Television Identification Using Con-
textual Awareness 1n the Device Connect Platform

Thus far, we have presented the use of a QR code to map
a particular device connect platform application with a
controller and mteract with different Mevia applications.
However, FIG. 14 shows how the asynchronous nature of
streaming can be taking advantage of and quickly determine
which smart television 1s 1 use and how to control it.
Assume that Adaptive HLS streams are used by an M3UR
streamer 1410 and 1420 shows a sequence of transport
streams as defined by the HI'TP Live Streaming standard,
were stream0-4 to streamO-11.ts 1410 are part of a stream
and StreamO.ts to Stream7.ts are part ol another stream,
which one could be at 700 Kbps and another one at 2 Mbps.
Such streamer can also be implemented by MPEG DASH

10

15

20

25

30

35

40

45

50

55

60

65

30

segmenter can also be used with MPD (Media Presentation
Document) that include a set of segments and use audio/
mp4, video/mp4, “AdaptationSet” entries that are part of the
MPD’s XML manifest. For cross-correlation purposes,
3U8 or MPEG DASH streamer 1410 and 1420 are cross-
correlated highly as they come from the same stream and are
synchronized. However, 1n the log file 14035, a system can
narrow down what 1s being downloaded, when, and by who.
For example, IP_clientO obtains Stream4.ts while IP_client2
1s processing StreamO-11 .ts. all depends on the player 1n use.
Hence by inspection, we know that stream4.ts and stream0-
S.ts are mapped to IP_clientO and IP_clientl respectively.
Hence, if a mobile device can present images with a higher
cross-correlation to Streamd.ts 1430, 1t can be concluded
that a device 1s then using IP_ClientO and that UserAgent
information mapped to that particular location can be easily
identified. This technique 1s useful as i1t 1s designed to
replace the QR code and map location to particular device or
smart television where the user interface can now be con-
trolled. Additionally, other methods of triangulation could be
used to further narrow the proper television set in use, for
example location fingerprinting, ultra-wideband positioning,
or others known 1n the art to distinguish multiple TVs with
the same content. In operating systems such as Android, the
class android.core.uwb can be instantiated to obtain posi-
tioning information, and locally accessible via the webkat
application. An UWB service and listen to TCP port 4444,
and webkit can retrieve via http or https://localhost:4444/
uwb, UWB values corresponding to the AirTags or UWB
Tokens around the device. In this particular implementation,
the androidx.core.uwb 1nstantiates UwbClientSessionScope
as wel as the UwbManager interfaces to make RangingMea-
surements and detect the proper TV client that is being
controlled or identified with the proper stream. In this
particular case, IP_Clientl 1s also associated with UWB_1,
whereas IP client2 1s also associated with UWB 2. Simi-
larly, 10S Devices as 1iPhone by creating and application
using NINearbyAccessoryConfiguration and obtaining a
device “session(_:didGenerateShareableConfigurationData:
for:). Hence, similarly to what 1s presented for android, an
application can integrate either android.core.uwb or NINear-
byAccesoryConfiguration or NINearbyPeerConfiguration
interfaces to detect TVs or displays i proximity, and further
1solate the device to be controller, even providing visual
teedback of the position of the TV that needs to be con-
trolled. This proximity location information 1s sent to the
MeviaVerse system for processing, either by itself or in
combination with QRCode, video 1mages capture forms the
TV set. In that way, a proper discernment of what TVs are
controlled by the MEVIA controller are available can be
presented, even with a mapping as shown in FIG. 14(c¢).

Elements 1405 and 1415 are Smart TVs with an UWB
Airtags associated with the stream or session being broad-
casted 1410 and 1420. A mobile phone or AR headset at
1430 can display now TV1 and TV2 controllers, download
ApplD, UUID for each TVs by discerning each TV’s stream
being broadcasted (see FIG. 14(a)a and (b)) by also using
UWB’s airtags and the “nearby” location mformation of
cach of the TVs. In some cases, scanming a QrCode may not
be necessary, as the UWB Addresses, and Images shown on
cach TV will suflice to determine which TV 1s used and
controlled based on the relative distance and position cal-
culated from the UWB Signal.

This 1s a useful scenario 1n an airport, restaurant, bar, club,
where multiple Smart TVs are displaying either the same
teed or different feeds and QR Codes are not captured by the
device’s camera, mstead UWB Airtag position information

US 12,346,399 B2

31

can be used by moving the device in the direction where the
distance to that TV 1s closer, or the location where the TV
1s located and sending that information to the MeviaVerse
system for processing and allowing commands to be send to
the TV from the phone or the AR device.

In the case where only 1images area available, at a com-
puting device or phone a user can capture pictures and video
streaming {rom a particular smart television as 1t streams a
particular broadcast 1435, then the stream 1438 can be
found. The information can be captured with a message
(e.g., SMS, WhatsApp, iMessage, etc.) and then a client logs
1440 from HTTP Server that 1s being accessed from the
HTTP Live Stream. The cross correlation 1442 then exists in
between the information captured of N-frames, window
capturing stream, and a QR code 1444 1s generated with a
certain time that 1s then displayed with authentication values
to the presumed smart television 1446 that has been located
or identified. The user then will proceed to scan the QR Code
and authenticate and validate that 1s the same source 1ssuing
the request, and by a mistake another smart television has
been 1dentified.

FIG. 15 shows the method in more detail, at step 1500
read access.log from all sources for smart TVs and at step
1505, an access.log from an HTTP server 1s identified with
all sources, where all smart televisions are retrieving the
streams being projected at any particular location. Log files
contain a user agent of the television, IP addresses of each
television source, and what was the latest stream retrieved
by the television. Hence, an IP address 1s mapped to a
particular transport stream (1S) segment. First 1t 1s assumed
that the mobile device 1s located at the same IP address or
subnetwork as the smart television which will narrow the
number of devices substantially. At step 1510, 11 there 1s less
than one source, either only one smart television is the
answer or 1f there none, there 1s no identification achieved,
as such a user will simply receive a timeout message or by
observing no feedback a user will understand that a QR
Code must be manually scanned from “All Sources™ 11 1t 1s
greater than one potential match, The system can also use
additional APIs, such as 1p2location.com or other providers
to narrow the number of searches and streams according to
a potential IP address match aided by third party services.
Additionally, FIG. 15 can be combined with Ultra-Wide
Band (UWB) tags to provide additional positioning infor-
mation that the phone can send, as millimeter position
tracking by using Apple AirTags or other UWB tokens for
positioning and localization.

In the event that no matches are found, a brute force
approach can be applied and at step 1515 can start 1n a loop
and all sources from all streams will be required to be
matched.

Assuming that, a match of IP Address to smart television
has been achieved and the number of sources 1s small (e.g.
a NAT translate all requests at a Corporation) then from all
sources and all streams that have been recently retrieved at
step 1520 are compared 1n a cross-correlation computation
at step 1525 with all frames received by the mobile device
at step 1513, and the highest value 1s computed.

The highest 2D cross correlation 1n the number of frames
identifies the location of the particular index, I, on R1 at step
1525. At step 1530, The location 1s then associated with a
particular smart television that can be mapped using the
content router and a message.evt with “DisplayQR Com-
mand” 1s then 1ssued with a generated QR code that can be
overlaid over the contents being streamed at a particular
time. Once the user visually sees the QR code display at the
smart display, a normal procedure will start and 1n other

10

15

20

25

30

35

40

45

50

55

60

65

32

situation authentication can be set to false at step 1535 and
simply gain control of the television without using a QR
code by receiving as a reply from the original message at
step 1540 (e.g., which may include an 1Message, SMS,
WhatsAPP message, and/or the like) where the user will
proceed to load the URL and control the television by
connecting to a particular controller associated with the
smart television.

WIFI Dongle for the Device Connect Platform

It 1s understood that not all televisions are compatible
with WebKit or other browsers and that some televisions are,
although compatible with HDMI 1nputs, are not smart tele-
visions. For those scenarios or for scenarios where more
control 1s required by the subscriber, FIG. 16(a) presents a
hardware alternative that generates QR codes and generates
the HDMI Signal to display streams and also to connect to
the mternet using WIFI. As shown, an LCD display 1s used
to display the QR code 1630 and inside the Dongle 1600, an
HDMI output 1603 15 used to control an operating system
1625 (e.g., ChromiumOS), and loads mevia.js. mevia-3d.s,
mevia-rtc.js and any other mevia-related resource 1620 that
allows control via operating system 1625. The MeviaApp
1605 and AppUI 1610 contain the firmware required to load
operating system 1623 and verifying the provisioned “mevi-
app”’ (configuration pointing to a particular URL) 1s loaded
and 1s used to configure WIFI. In order to configure WIFI,
Bluetooth Low Energy protocol 1s used to “pass” the con-
figuration from a mobile device to the dongle. FIG. 16())
depicts the authentication and WIFI provisioning via BLE
methods as shown at step 1650, ¢.g., EValue or Encrypted
Value 1s a UUID with the Public Key and then generate
QRCode with the concatenation of the a “device connect
plattorm URL” (e.g. https://device_connect_platform.com/
auth?Evalue=XYZ . . . 7) with the FEValue set at
“XYZ ...7, this 1s displayed for 60 seconds and scan a QR
Code at step 1656 from a mobile phone and extract the
UUID to be activated at step 1660.

The dongle state machine will then replace the display
with “Waiting BLE WIFI” at step 1663 to notily the user that
BLE 1s being used to configure WIFI. Once the dongle WIFI
1s activated, then 1t can be configured with the BLE protocol
and as soon as the dongle connects to the Internet and to the
device connect platform check 1f the UUID 1s activated, 1f
not, the dongle will be deactivated and the process will start
all over again.

There are multiple ways to load gestures.;s and mevia.js
libraries, and how a controllers can be only controllers 1700
or only displays 1710 as shown 1n FIGS. 17(a)-17(c). Also,
a controller could also be a display and vice versa, which
means that a section of the screen can be used for touch and
a section for display as shown in client 1720 and client 1730.
In those cases, where a client 1s a controller and display,
different ports can be used to handle tratfic of a combined
mevia-gesture.js can also be implemented and used. Finally,
the device connect platform allows two or more hybnd
controller-displays 1740, 1750, and other devices that are
only displays 1755.

Device Connect Platform in Cable and Satellite Systems

Another aspect of this disclosure 1s the ability to integrate
with cable satellite systems. As shown in FIG. 20, a stream
2000 1s bemg displayed at a local store with a QR Code
2010. A keypad controller 2014, just as a standard remote
controller, 1s shown as part of mobile phone interface after
scanning. The controller 2014 can be connected to a pay-
ment portal 2015 that can then validate the use of the system
by verifying that a particular user 1s a paying customer of
service (e.g., like Sling television or Comcast). The device

US 12,346,399 B2

33

connect platform 2016 provides an iteractive experience to
the end user, and a controller and the Meviapp server
generate HTML and JavaScript results that are then man-
aged from the keypad or other controller 2014. The headend
system 2020 can then retrieve using the caching server 2022
all generated HTML and JavaScript that 1s being rendered
together with music and/or video 2030 that can then multi-
casted to a cable television and satellite system that 1s being
retrieved by 1n several set top boxes 2040 (e.g., DOCSIS 2.0
or 3.0) or OTT Systems, and observed at stream 2000.
Hence, an interactive television experience 1s created and
any user with a phone can change channels for example,
load visual widgets, and overlay content generated from the
MEVIA Sever at the device connect platform to be broad-
casted to massive cable & satellite systems or OTT plat-
forms (such as Sling television or FUBO television) or
NextGenTV such as ATSC 3.0 standard broadcasting system
over-the-air. For example, the “Mevia Server” at 2016
generate a web-page with the animations, and interactions
that are generated from the controller 2014. The controller
interacts with the QR Code 2010 and see an image at 200
that 1s projected and multicast devices at 2025 as well as
unicast devices at 2040, retrieve content from the caching
server at 2022 that renders and broadcasts the resulting web
pages with HITMO and JavaScript at 2018. In some embodi-
ments, the music and video at 2030 can be added or retrieved
by the caching unit as presented 1in the 074 patent, as shown
in FIG. 14, HLS streams at 1410 and 1420 are in m3u8
format

Other controllers such as games, video interfaces and
other can be attached and a novel broadcasting system,
powered by the device connect platform.

Clearly, a user can interact with content in the device
connect platform and that content be combined with music
channels. As shown in FIG. 20, music channels 2030 could
work as background music that 1s distributed and assets
created 1n the caching unit. For instance, users may play a
game (e.g., PACMAN) for ten to fifteen minutes, and sound
bites from the game can be mixed with songs stored at music
channels 2030 as well as integrate user’s comments and text
that can be overlaid as part of CSS style “Absolute” and

using translucent <divs> that appear at diflerent positions of

the game. Also, using the FIG. 12(c¢) system, a “Mevia App
server Display” could be composed of dialogs with multiple
people 1 a video conferencing call or any HTML from other
web applications, and any other web application that can
interact with a user or multiple users. For example, a user
may decide to draw an NFT and store the process of drawing,
all the paths from an 1nitial x1, y1 position vector to another
x2, y2 position vector, and all the steps to draw a particular
figure. The 1mages and all streaming parts from the HITML
or canvas plus HITML are stored as part of the caching
system that generates screens from the HI'ML that 1s ready
to be multicast or streamed to a cable operator. Hence, the
device connect platform contents become that the back-
ground for the music being broadcasted that enhance or can
decorate the ambience for a museum, coilee shop, or any
other location.
Content Routing in the Device Connect Platform

Thus far several routing systems mostly related to QR
code mappings, WebSockets and WebRTC routings, and
well as Windows device messaging have been disclosed.
However, content routing will be explained in more details
in the section, content routing 1s a key feature of the device
connect platform and FIG. 21 depicts how multiple appli-
cations with multiple UUIDs and controllers are properly
routed to the respective Mevia application.

10

15

20

25

30

35

40

45

50

55

60

65

34

In the device connect platform, each application has an
Application Identifier (ApplD) and a user generates a UUID
2180 when interacts with a particular application, at the
same time each controller 1s mapped to a QrUrl that 1s stored
in the content routing table. In some cases, the content router
may require authentication 2165 and the previous applica-
tion 1D 1s also stored, or the sequence or previous applica-
tion 1dentifiers 1s stored to PrevApplD field 2168 to be able
to return to a previous application 1n the device connect
platform session. Also, a current controller value 2170 1s
kept for the type of controller currently in use. The first
message that a controller receives per mnitialization 1s “init-
Controller” 2124, the 1nitController command sets the
resources, and parameters that are required for a particular
user. The controller may generate gestures 2134 or a keypad,
Or upon pressing certain events might generate Command
Macro 2140 or gestures (as a Hitach1 Magic Wand device).
A gesture from a “wand device” 1s a 3D accelerator read that
1s translated to UP, DOWN, SWIPE LEFT, SWIPE RIGHT
commands.

A content router will be able to manage thousands of
commands and events (See FIG. 21), from touch 2120 to
audio and video 2130. The content queue 2118 recerves
packets that carry out information about the Application
Identifier of a target, the UUID generated by the device
connect platform for a particular user, and the message.evt
with message pavload 2114. The message payload 1s not
analyzed by the Content Queue which can be implemented
using a HashMap or a NoSQL database, a Linked List. The
[Load Balancer 2155 receives values such as Bandwidth,
Load per App, and QoS 2150 and can be adjusted to
determine when to process and how to process the Content
Queue. Once the Content Queue selects a packet to be
processed, 1t 1s passed to an Application Mapper 2142, the
application mapper 1s 1 charge of determining whether a
particular command has to be converted to a JavaScript
macro converter 2144, or if 1s an

Exit” command that
require controller remitialization 2146. As an example, the
system can include that a “Long Tap™ as the universal “ESC”
command, that means exit the device connect platiorm
Application. As such the Application Mapper 2142 can be
translated to draw a particular screen into a canvas 2140 or
play a particular audio stream as a notification buzzer at
ApplD2 with UUID2 2105, or the application mapper may
send an evt.mousestart x, y, z 2110 to mevia app UUIDI
with AppID1 at 2100. In another varnation, the application
mapper will send a jQuery macro to UUID4 and ApplD1
with the JavaScript “$(‘#slider’).next();” that is then “evalu-
ated” or using the eval command at the UUID3 with APPID2
WebSocket, or smmply send a command with
message.evt="SwipeRight” with message.evt. KeyB=<ctrl>
2108 to the application ApplD3 with UUID3 2112.

A content queue system and controllers 1s accessible via
QrUrll to QrUrl4 (QR Code’s Universal Resource Locator)
in this example and each controller can include any of the
controllers as shown 1n FIG. 10, at 1001, QrUrll 1s associ-
ated with a Game, Qrurl2 with NFT Lab, QrUrl3 1s Video-
conferencing and QrUrl4 1s a Door controller interface or
application. In essence, the content router i1s processing all
messages using SocketlO and can be implemented in
NodelS or other languages. For example, a Content Router
creates as group to join all messages for a particular App
Identifier with a UUID. To help 1illustrate, pseudocode may
define an event listener for a connection event on a Web-
Socket server. Further, when a new connection 1s estab-
lished, the callback function 1s executed with the connected
socket as an argument. Inside the callback, a pathlD 1s

US 12,346,399 B2

35

obtained by calling getContentRouter with two arguments:
UUID and ApplD. The socket then parses the incoming data
as JSON. It logs a message to the console indicating that
command ‘X,Y’ has been received, including the extracted
data.evt and data.evt.x, data,evt.y properties from the parsed
data. Finally, the server broadcasts a message with the event
name “ComandXY” and the parsed data to all sockets 1n the
room are 1dentified by pathID.

The socket.broadcast.to(pathld) from the SocketlO
library 1n NodelS can be used to emit certain command to
a particular application ID as the Content Router has gen-
crated a pathld. The Content Queue on the other hand can be
implemented as a Hashmap with a Round Robin or Weighed
Round Robin access techmque or wusing “Apache
ActiveMQ)” or other techniques to handle great amounts of
messages from multiple sources. As the same time Kuber-
nettes and cloud-based approaches can be used to address
scalability 1ssues both vertical as horizontal.

On FIGS. 22(a)-22(¢), we present a data capturing system
that includes a nodejs application that services all commands
and sends commands to a version of MEVIA but instead of
being 2-dimensional now 1t can be 3-dimensional 1n nature.
As shown 1n FIG. 22(a), the first step 1s to handle, device
motion 2200 shows how a device can capture data from the
accelerometer and other instrumentations from the mobile
device, such that orientation, and motion can be captured
and fed into a deep learning algorithm,

function handleOrientation{event) {
var absolute = event.absolute;
var alpha = event.alpha;
var beta = event.beta;
var gamma = event.gamma;
/f var interval = event.interval;
// elapsed__ o = elapsed_ o + interval;
/f if (elapsed__o>=delta_ t){
$(*.alpha”).text(*alpha (z axis, O to 360): ” + alpha.toFixed(4));
$(*.beta”).text(“beta (x axis, —180 to 180): ” + beta.toFixed(4));

10

15

20

25

36

For example, the tramning algorithms {for gestures
1s then as follows: X tramn=[[0 . . . STEPS], [0 . . .

STEPS . ..]...] of N Samples. The objective 1s that the
value of “STEPS” are 200-300 steps and that can be nor-
malized to handle the same amount of samples and Y_Train
are of values chosen “Up”, “Down,” “Leit,” and other
gestures that are being trained with N samples as shown 1n
FIG. 22(b). Once the weights or deep learning machine
converges as using 20 to 25 epochs, training converges at
94-97% accuracy, the machine can be saved to be used
locally at the phone 2218 as FIG. 22(c¢) and a second neural
network could be stored remote NN 2220, in one trainming
delays are zero and remote NN 2220 the values includes all
delays from network traflic. The objective 1s result 2223 that
will generate the proper messages that are now sent as
message.evt commands to the device connect platform.
FIG. 23 shows how then all gestures can handle can send
commands to the device connect platform application 1n
control, for example at (a) the hand will move from 2300 to
2312, by moving or waving a hand gesture over the air from
lett to right, as swipe, At FI1G. 23(a), the applications shown
by the device connect platiorm application would be “Mevia
App 1,7 “Mevia App 2,” and “Mevia App 3.” By scanning
the QR code associated to the smart television 2315, the
commands 1ssued from the mobile phone’s gestures 2300
are sent or 1ssued to the web application loaded into the
device connect platform. Hence, the device connect platiorm

$(*.gamma’).text(“gamma (y axis, —90 to 90): ” + gamma.toFixed(4));

$(*.absolute”).text(*““absolute: ” + absolute);
elapsed__ o = 0;
/f }
h
function handleMotion(event) {
var acceleration = event.acceleration;

var accelerationIncludingGravity = event.accelerationIncludingGravity;

var rotationRate = event.rotationRate;
var interval = event.interval;
elapsed = elapsed + interval;

The events captured from 2203 are then stored locally 1nto
mobile device 2206. The mobile device 2206 can be deliv-
ered via JSON commands to a service for traiming a neural
network at a server 2208 where they are first stored and
saved 1n Clean Data 2210, while map to a particular set of
commands. Those commands 2212 could be up, down, left,
right, draw a character, make a number. Each command 1s
stored for two to three seconds at a sampling rate of 16 ms
represents around 200 samples, which will be used for a
Long Short Term Memory tramning (LSTM) or other neural
networks or neural networks.

Once the accelerator data 1s saved as a JSON object 2214,
FIG. 22(b) presents the standard process of training that can
be done using Keras or other time training sequences,
observe that the training can be done using deta_t, and
accel_x, y, z values that can be consolidated from all the

clements captured from FIG. 22(a). The training sequences
can be divided into 70% used for training 2216 and 30%

used for testing 2217.

50

55

60

65

application can be controlled using gestures as shown 1n
movements 2300. In this example, a swipe right 1s 1ssued
and the menu switches from Mevia App 3 to Game Appli-
cation 2312. As part of the device connect platform content
router, the commands can be converted {rom
message.evt="Swipe Right” to $(‘slider’).nexto. Once a
menu option 1s selected, a selection 1s done by another
gesture to load the game application. A tap gesture can be
1ssued to smart television 2310 and then the selected appli-
cation 2305 is loaded, and the game controller 2325 used

regularly 1s load to mteract with the device connect platform
application as in this case 1s a game application.

FIG. 24 show how the MEVIA application 1s then
changed by adding a 3dmevia.js to handle Z-axis positioning
changes, for example a WebGL or ARKit application can
translate depth movements 1n addition to X-axis and Y-axis
movements. As a device connect platform application, the
messages.evt can also contain the structure with: message.x,

US 12,346,399 B2

37

message.y, and message.z position and handle MeviaAccel-
crometer instances 2430. The accelerator and gyroscope
instance 1s common on JavaScript as part of the object
window.ondevicemotion, window.ondeviceorientation, or
window.onmozorientation as supported by 1Phone, Firefox,
and Chrome browsers. Additionally, the 3Dmevia.js 24035
library contains the 3D positioning and accelerometer values
that can be used also 1n combination with a Camera LIDAR
sensor for positioning in AR/VR headsets (Augmented Real-
ity/Virtual Reality), mewvia.js 2422 and other resources
stylesheets loaded by mevia.css 2424. This type of applica-
tion 1s then handled to interact with a 3D Canvas 2426, 2410
1s also recipient of SocketlO messages that contain all
controller commands, additionally HREF (HITML Refer-
ence) and other web references in the web application are
converted to work on the device connect platform 2428. The
use of WebGL and 3D Renderings are useful for AR/VR
scenarios, where the mobile device or terminal 1s an AR/VR
Headset (e.g. Vision OS, MetaQuest, Vivero, others), o
mobile phone with Augmented Reality (AR) using a phone’s
camera such as 10S or Android.

FIG. 25 presents the steps necessary to training the
gestures 1n 2D or 3D systems, at start at all initializations of
authentication using gesture at 2500, by loading the neural
network (e.g., LSTM) to train with more mformation. The
Training Data at 2510 interacts with 2505 with 1s the training
of those gestures with the accelerometer’s information from
the device, called “Accel Data,” once training 1s completed
alter several 1terations of training, the neural network can be
tested with a subset of training data, or “Test Data’ as shown
at 2515. Further, once the validation and training correlation
1s completed at 2520 with a desired accuracy, all neural
network weights are saved and the resulting Neural Network
can be used as part of detecting “swipe right”, “tap,” or even
train a “game controller” using gesture information as
shown 1n FIG. 23 For instance, upon capturing a sequence
of samples for swipe right or swipe lelt gesture as shown 1n
FIG. 22 at 2214. The element at 2510 uses the device
accelerometer data (Accel Data) that 1s loaded with multiple
with “Swipe right” training values or the training informa-
tion for “swipe right or left.” The sequence of values that
may include time, X, y, z, coordinates, or even accel_x,
accel_y and accel_z values are used for training. Once
trained, the detection functionality shown in FIG. 23 2300,
2312 “swipe right or left,” can be used to move the position
or cursor on the screen an 1ssue message.evt commands to
the Mevia App, 2310. The saved Neural Network (NN) or
LSTM once trained can recognize gestures as depicted 1n
FIG. 22 either by saving downloading the NN into the
device or by processing the NN as part of the Mevia.js by

receiving SocketlOMessages or by processing the requests
via an HTTP GET or POST Request from the mobile device

or AR headset.

FIG. 26 1s a tlow diagram generally illustrating method
2600 for enabling a user to control and interact with content
on a computing device using a browser intertace on another
computing device, according to the principles of the present
disclosure. At 2602, the method 2600 generates a first
message for a first browser executed on a first computing
device, where the first message includes 1nstructions that 1n
response to being executed by the first browser causes a
representation of an iterface of a physical user input device
to be displayed by the first browser.

At 2604, provides the first message to the first browser
(c.g. Web Page on Smart TV).

At 2606, the method 2600 generates a second message for
a second browser executed on a second computing device,

10

15

20

25

30

35

40

45

50

55

60

65

38

where the second message includes instructions that when
executed by the second browser enables user interaction
with content provided by the second browser 1n responsive
to mput from the representation of the interface of the
physical user input device displayed by the first browser.
The physical user input device 1s configured to interact with
the content provided by the second browser. (E.g. Web Page
with controller displayed at mobile device)

At 2608, the method 2600 provides the second message to
the second browser and create an interaction from first
browser to the second browser (e.g. Command from con-
troller to first browser’s web page and responses).

ACRONYMS

[P: Internet Protocol

AAC: Advanced Audio Encoding

CDN: Content Delivery Network

UUID: Unique Universal Identifier

BLE: Bluetooth Low Energy

CABSAT: Cable and Satellite systems

OTT: Over-the-Top Platiorms

SocketlO: JavaScript library used to manage WebSockets.
MP3: MPEG-2 Audio Layer III

OGG: Theora codec for audio

OGV: Theora codec for video

MPEG: Motion Pictures Expert Group
FFMPEG: Fast Forward MPEG

WebRTC: Web Real-time Communications

HLS: HTTP Live Streaming

T'S: Transport Stream

EC2: Elastic Computing Class 2

VPR&: Open video encoding developed by Google using LibVPX
SSH: Secure Socket Shell

RTMP: Real-time Messaging Protocol

WSS: WebSocket Secured Protocol

HTTP: Hypertext Transfer Protocol

HTTP GET: HTTP Method used to submit

data when data 1s posted a part of URL

HTTP POST: HTTP Method used to submuit data
when data 1s part of the payload not the URL
HTML: Hypertext Markup Language

HLS: HTTP Live Streaming

LSTM: Long short-term memory

NAT: Network Address Translation

NFT: Non-Fungible Token

NN: Neural Network

RTP: Real-time Protocol

SIP: Session Initiation Protocol
URI: Universal Resource Identifier
URL: Universal Resource Locator

WLAN: Wireless Local Area Network or WiFi
OTT: Over-the-Top Streaming Platform

LAN: Local Area Network

PAN: Personal Area Network

WAN: Wireless Area Network

It 1s noted that various individual features of the inventive
processes and systems may be described only 1n one exem-
plary embodiment herein. The particular choice for descrip-
tion herein with regard to a single exemplary embodiment 1s
not to be taken as a limitation that the particular feature 1s
only applicable to the embodiment 1n which it 1s described.
All features described herein are equally applicable to,
additive, or interchangeable with any or all of the other
exemplary embodiments described herein and, 1n any com-
bination, or grouping or arrangement. In particular, use of a
single reference numeral herein to illustrate, define, or
describe a particular feature does not mean that the feature

cannot be associated or equated to another feature 1n another
drawing figure or description. Further, where two or more
reference numerals are used in the figures or 1n the drawings,
this should not be construed as being limited to only those

US 12,346,399 B2

39

embodiments or features, they are equally applicable to
similar features or not a reference numeral 1s used or another
reference numeral 1s omitted.
The foregoing description and accompanying drawings
illustrate the principles, exemplary embodiments, and
modes of operation of the systems, apparatuses, and meth-
ods. However, the systems, apparatuses, and methods should
not be construed as being limited to the particular embodi-
ments discussed above. Additional variations of the embodi-
ments discussed above will be appreciated by those skilled
in the art and the above-described embodiments should be
regarded as 1illustrative rather than restrictive. Accordingly,
it should be appreciated that variations to those embodi-
ments can be made by those skilled in the art without
departing from the scope of the systems, apparatuses, and
methods as defined by the following claims.
What 1s claimed 1s:
1. A method, comprising:
generating a first message for a first browser executed on
a first computing device, the first message including
instructions that 1n response to being executed by the
first browser causes a representation of an interface of
a physical user input device to be displayed by the first
browsetr;
providing the first message to the first browser;
generating a second message for a second browser
executed on a second computing device, the second
message including instructions that when executed by
the second browser enables user interaction with con-
tent provided by the second browser responsive to input
from the representation of the iterface of the physical
user mput device displayed by the first browser,
wherein the physical user mput device 1s configured to
interact with the content provided by the second
browser;
providing the second message to the second browser;
receiving a third message from the first browser including
touch gesture data 1n response to user engagement with
the representation of the interface of the physical user
input device displayed by the first browser;

converting the touch gesture data to updates to the content
rendered or executed by the second browser;

updating the content rendered or executed by the second
browser based on the touch gesture data; and

providing a fourth message to the second browser, the
fourth message including the updates to the content
provided by the second browser.

2. The method of claim 1, further comprising;:

receiving an 1dentification message including application

identification data associated with a web application;
determining, based on the application identification data,
identification information of the physical user 1nput
device used to interact with the web application; and
generating the instructions of the second message that
when executed causes the mterface of the physical user
input device to be displayed on the first browser.

3. The method of claim 2, wherein the identification
information of the physical user input device indicates what
brand, type, model of the physical user input device.

4. The method of claim 2, wherein the identification
message 1s associated with a quick-response code.

5. The method of claim 2, wherein the application 1den-
tification data includes information 1dentifying a destination
server to receive any user interaction with the interface of
the physical user input device.

6. The method of claim 1, further comprising:

receiving a user selection of a web application; and

10

15

20

25

30

35

40

45

50

55

60

65

40

generating a third message for the first browser executing
on the first computing device, the third message includ-
ing 1nstructions that when executed by the first browser
causes an alternative representation of the interface of
the physical user input device associated with the web
application to be displayed by the first browser.
7. The method of claim 1, wherein representation of the
interface of the physical user input device includes an entire
layout of the physical user mput device.
8. The method of claim 1, wherein the 1nstructions that in
response to being executed by the first browser causes the
representation of the interface of the physical user input
device to be displayed by the first browser includes at least
one JavaScript library.
9. The method of claim 1, wherein the instructions that
when executed by the second browser enables user interac-
tion with content provided by the second browser includes
at least one JavaScript file.
10. A system comprising;:
at least one processor circuit; and
at least one memory that stores instructions to be executed
by the at least one processor circuit, the mnstructions
configured to perform operations that comprise:

generating a first message for a first browser executed on
a first computing device, the first message including
instructions that i response to being executed by the
first browser causes a representation of an interface of
a physical user input device to be displayed by the first
browsetr;
providing the first message to the first browser;
generating a second message for a second browser
executed on a second computing device, the second
message including nstructions that when executed by
the second browser enables user interaction with con-
tent provided by the second browser responsive to input
from the representation of the interface of the physical
user mput device displayed by the first browser,
wherein the physical user mput device 1s configured to
interact with the content provided by the second
browsetr;
providing the second message to the second browser;
recerving a third message from the first browser including
touch gesture data in response to user engagement with
the representation of the interface of the physical user
iput device displayed by the first browser;

converting the touch gesture data to updates to the content
rendered or executed by the second browser;

updating the content rendered or executed by the second
browser based on the touch gesture data; and

providing a fourth message to the second browser, the
fourth message including the updates to the content
provided by the second browser.

11. The system of claim 10, wherein the mstructions are
further configured to perform operations that comprise:

receiving an identification message including application

identification data associated with a web application;
determiming, based on the application identification data,
identification information of the physical user input
device used to interact with the web application; and
generating the instructions of the second message that
when executed causes the mterface of the physical user
input device to be displayed on the first browser.

12. The system of claam 11, wherein the identification
information of the physical user input device indicates what
brand, type, model of the physical user input device.

13. The system of claam 11, wherein the identification
message 1s associated with a quick-response code.

US 12,346,399 B2

41

14. The system of claim 11, wherein the application
identification data includes information 1dentifying a desti-
nation server to receive any user interaction with the inter-
face of the physical user input device.

15. The system of claim 10, wherein the instructions are
turther configured to perform operations that comprise:

receiving a user selection of a web application; and

generating a third message for the first browser executing
on the first computing device, the third message includ-
ing 1structions that when executed by the first browser
causes an alternative representation of the interface of
the physical user mput device associated with the web
application to be displayed by the first browser.

16. The system of claim 10, wherein representation of the
interface of the physical user input device includes an entire
layout of the physical user mput device.

17. The system of claim 10, wherein the istructions that
in response to being executed by the first browser causes the
representation of the interface of the physical user input
device to be displayed by the first browser includes at least
one JavaScript library.

18. A non-transitory computer-readable storage medium
having program instructions recorded thereon that, when
executed by at least one processing circuit of a computing
device, perform a method, comprising:

generating a first message for a first browser executed on

a first computing device, the first message including
instructions that in response to being executed by the

10

15

20

25

42

first browser causes a representation of an interface of
a physical user input device to be displayed by the first
browser:;

providing the first message to the first browser;
generating a second message for a second browser

executed on a second computing device, the second
message including nstructions that when executed by
the second browser enables user interaction with con-
tent provided by the second browser responsive to input
from the representation of the interface of the physical
user mput device displayed by the first browser,
wherein the physical user input device 1s configured to

interact with the content provided by the second
browsetr;

providing the second message to the second browser;
recerving a third message from the first browser including

touch gesture data in response to user engagement with
the representation of the interface of the physical user
iput device displayed by the first browser;

converting the touch gesture data to updates to the content

rendered or executed by the second browser;

updating the content rendered or executed by the second

browser based on the touch gesture data; and

providing a fourth message to the second browser, the

fourth message including the updates to the content
provided by the second browser.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

