a2 United States Patent

US012346399B2

ao) Patent No.: US 12,346,399 B2

Hernandez-Mondragon 45) Date of Patent: Jul. 1, 2025
(54) METHOD AND SYSTEM FOR A WEB (56) References Cited
INTERACTION WITH OBJECTS AND US. PATENT DOCUMENTS
REMOTE DISPLAY TECHNOLOGIES "
2012/0169593 Al* 72012 Makcceeeeveennnn GOGF 3/04883
(71) Applicant: Edwin A. Hernandez-Mondragon, 345/157
Boca Raton, FL (US) 2014/0011584 Al 1/2014 Shin et al.
2015/0382066 Al 12/2015 Heeter et al.
(72) Inventor: Edwin A. Hernandez-Mondragon, 2016/0034058 Al 2/2016 Stauber e al.
B R FL (US 2021/0133274 Al* 52021 Chucceeeens GOGF 16/9577
oca Raton, FL (US) 2024/0012930 Al* 1/2024 HO4L 51/216
2024/0155033 Al* 5/2024 AG63F 13/22
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 0 days.
KR 102344580 B1 12/2021
(21) Appl. No.: 18/622,249
OTHER PUBLICATIONS
(22) Filed: Mar. 29, 2024))
Igbal, Muhammad Zahid and Campbell, Abraham G .; Potential
(65) Prior Publication Data Security and Privacy Issues in Zero Ul Touchless Technology, Int.
Cybersecur. Law Rev (2022), Apr. 19, 2022, pp. 1-8.
US 2024/0330392 Al Oct. 3, 2024 https://www.qararairways.com/tradeportal/en/QR-NDC html; Intro-
ducing Oryx Connect, 7 pages.
PCT ISR and Written Opinion for corresponding PCT Patent
Lo Application International Serial No. PCT/US2024/022310, Dec. 20,
Related U.S. Application Data 2024, 10 pgs.
(60) :I;iox;i(s)i%nal application No. 63/456,018, filed on Mar. * cited by examiner
51) Int. CI Primary Examiner — Cao H Nguyen
Gh Gn0t6F }6/957 (2019.01) (74) Attorney, Agent, or Firm — Dickinson Wright PLL.C
GO6F 3/0488 (2022.01) (57) ABSTRACT
GO6F 16/955 2019.01
(52) US.Cl () This disclosure covers a technological advanced for a dis-
LT . tributed operating system where mobile devices are control-
CPC oot G06501163/%5177é20%l;?;/)§ 5?361;031/90‘{)6;8 lers and smart televisions become displays for a system
. . (o); (01) where messaging, streaming, and computation are stored in
(58) Field of Classification Search the cloud or a decentralized operating system.

CPC . GO6F 16/9577; GO6F 3/0488; GOGF 16/9554
See application file for complete search history.

18 Claims, 30 Drawing Sheets

10 Davice Conngat Piatfom :
i [}
M\GO lv {7 i
b infegraiion ode weh infegration code weh irfegration code web infegration code wehintegrafion sode {]
NFT Lab Doey Bel ames VideoCorf
P P80, 43 Porl 8, 443 Por 0,443 Port 80, 443 :
bl Pt BO0G Port 800 ort §000 Port 8005 Port 800 !
1| ofmeviaart iotaxpert eom maviagames.com Toommevia.l mevie.v i
[A A A g Ty ‘
14 13 144 130
[web tegration ogde - ; indanrah :
WG UG 0~ | <soiptsm="weh integrafion cod’...
<iml L. E_i"?‘ ;m]
to5— | FTIP s> b
\‘tﬁg“ NogelS |} er B p>
I <MeviaP :
} e et ettt IO \ 1%
S~ Govee CometPi_| 1 @

US 12,346,399 B2

Sheet 1 of 30

Jul. 1, 2025

U.S. Patent

| Ol
%ﬁ i) m%m_n_ 18U B0MA] | -
<P a8
B Srepoy 1
<550
<TG
" 3000 UoieiBo Gam =08 1008 ™ 500 Logeifiayu gam 3
054 07l 0t} 0 0l
,,,,,,,,,,, A Ay Sy N —
Ay Biell A BB 1007 oo satwebeinaw (oo yedxaior yEeeLgy |
0008 }od (08 10d (1008 Hod (008 Hod 0oguod |
Chy Dg0d G 0810d Chr 08 Kod £ 08 H0d e (8 0 m
Ju03080iA salES ll2g 100 Ge7 LN
apoo vouesBayu gem apoo tonesBay gom epoo vogesBap gemd | |8poo voneibays gom 8002 ticedBay gamH m
0 Va3
WOLRI 108U07 918(] |

US 12,346,399 B2

Sheet 2 of 30

Jul. 1, 2025

U.S. Patent

| 2 9l .
QN/// SR BlleD) nd
1

ol

£l

i

i

Ok

b

i

NAOO 5

¢

1K B !

7

w

(67
20
. sayouooaueBiy Bineus ddey sy ; ysnugpuieday einus ddeyrsdny
/ 1B0AU0Y BB m,\ 1Boue)
184 ‘ g0
<A U
mseb =08 sy < §E5aineaB =08 sy
o 0

U.S. Patent Jul. 1, 2025

Sheet 3 of 30

US 12,346,399 B2

hitns:/fapp.mevia. ivlaudiovideo
SSA
3~ Vioghone§ P . .
> Camera Cantoler
hitns:fapp. mevia.lv/keypad
C OO0)00)=)(backspace)
Ctab JL 8w e JUC OOy U ECo JCR LU
Leaps) a) s LU U JUJUIC L J <enter)
Lshit J{ 2 JCx JLe Jev Lo JEajimJe, JL. UL Cshit)
Coom)@ b)
305
Keyboard Controller
/
300

FIG. 3

U.S. Patent Jul. 1, 2025 Sheet 4 of 30 US 12,346,399 B2
14
406
404 app. meviav3000/keypad
\ = gﬁEpT’h/ﬁgs ag/ agg.hwevia.tv/keypad ?
| ‘OC:D # > | Controller Server
402 eV, gesturess KeyPad Contol
iapp mevia.vkeypad i i{mages,/408 eyPad Controller
571819 Ohers
356 ||~ Ab.000 p 416
112 .
T 3 socketiO
{AppD,
b, 42 '4/18
O message.evl, a——
4P-C “ message.valte, Sodletl0
Message.x, 420 Command
message.y,
messagez, 435 v/
message.time, / CallApp.mevia tvicall
43\2 } o CallApp.mevia.tv:3000/call ¥ o
\ S web ntegrafion code -1
. : GETipp | 428 LYEOTES
httns://CallApp.mevia.tvical | oClApp \ 424
KeyPressed Remotel initController
e 1 Conter | [S00e |48
7 el Web App
, 440 HTML Page
//
434 130 ~ socketon("KeyCommand”, funclionmessage) {

\

web integration code <

var keyboardEvent = document.createEvent(
KeyboardEvent)

keyboardEventinitMethod){ “keydown’, ...

message.evikeyValue,)

(. document dispatchEvent(keyBoardEvent)

FIG. 4

U.S. Patent Jul. 1, 2025 Sheet 5 of 30 US 12,346,399 B2

INITIALIZE FOR WEB COMMUNICATION
WITH SECURITY CREDENTIALS LIKE A 300
KEY, CERTIFICATE, AND CERTIFICATE

AUTHORTY
AT FORAN SET THE URLFOR THE ORIGIALAPPLICATIONAND | g7
APPLICATION =1 RETRIEVE RESOURCES FOR THEAPPLICATION FROM
LAUNCH COMAND THE (R
/ '
0 MODIEY ALLTHE HREF ATIRBUTES 0
WTHNTHE DOCUENT GBIECTMODEL
(DOW) OF THE APPLICATIN
SENACOIIAND || SETTHEAPPLCATONDANDAFORMOE | 55
7 '
52 SET THE CONTROLLER WITH SPECIFIC PARMMETERS |2
GENERWTEAQUCKRESPONSECODE. |55
STRING

SET THE QUICK RESPONSE CODE TO THE -5
QUICK RESPONSE CODE STRING

'

APPEND THE DOM FROMAURL 5%

'

GENERATE ARESPONSE USING THE DOM OF THE URL |0

FIG. 5

U.S. Patent

Jul. 1, 2025 Sheet 6 of 30

US 12,346,399 B2

INITIALIZE AN HTTP SERVER WITH
SPECIFIED SECURITY
CREDENTIALS

P

'

LOAD THE APPLICATION

VALIDATE
PAYMENT

A

'

RETRIEVE THE CONTROLLER DOM

;

ARESPONSE IS GENERATED
BASED ON THgOCN(I)NTROLLER’S

660

WAIT STATE

:

DELIVER THE CONTROLLER IN RESPONSE
TO THE SCANNING OF THE QUICK
RESPONSE CODE

Pl

'

|F THE AUTHENTICATION CHECK
1S SUCCESSFUL, THE
CREDENTIALS ARE VALIDATED

P

y

|

b A
605

USE EVENTS FROM THE DOM TO
UPDATE THE DOM FOR THE
CONTROLLER

PR

GENERATE AQUICK RESPONSE CODEFOR | 620
AUTHENTICATION PROCESS

'

0y

PRINT QUICK
RESPONSE CODE

DISPLAYQUICK | 624
RESPONSECODE |

FIG. 6

U.S. Patent Jul. 1, 2025

720
WebSockets
715

Sheet 7 of 30 US 12,346,399 B2

10~ Device Connect Platform ,_.\3__,
I =
105~
=% rm
Controller %
M0
FIG. 7A
WebRTC WebRTC Tunne!
T~ Deice ComentPtom S Devis Connect Patom
b o A
730 - Ti Tumel \ l /755
~J = 745 '
N ™ 750
Controller Controller
i— "
FIG. 7B FIG.7C

U.S. Patent Jul. 1, 2025 Sheet 8 of 30 US 12,346,399 B2
ST
oC D 805
f , /
iapp.mewa.tv/gestures Device Connect Platform !

30 »| | Device Connectif Device Connect}| Device Connect Other
SWIPE 5 Platiorm1 || Platiom? || Platform3)
RIGHT 3 \\

800”/ a;‘zlaas 56 E}ﬁ@g 810
b
\ O j QR Code
FIG. 8A
" 810 805
=n)/
tilapp.mevia tulgestures]| | | Device Connect Platiom / {
Devi {
Device Connect||Device Connect eg@%&%’ Zec Other.
0 =, Platform 2 Platform 3 (ame application
wONK 5
mﬂf/](?' }';‘:g.:.m‘- SREE et H
45
805
CHOOSE A GAME
L& PAC-MAN]
L NS PAC- MAN]
L& COOKIE - MAN]
LEa LEARN I
_ C
m%‘iw‘?/)
mm"ﬁ\m
QR Code

US 12,346,399 B2

Sheet 9 of 30

Jul. 1, 2025

U.S. Patent

026

V6 Old

N

oﬁm/w%
OO

300040

s

ot

1

|
b _
"ol | woeld loauuon somaq | !

13
|
1
m
§
m
i

L.

{
L0}l 10807 B0IAS(

WLIOJBI | 18U B01aQ

sainisabyal einawr-dde

idvlL
L— (06

US 12,346,399 B2

Sheet 10 of 30

Jul. 1, 2025

U.S. Patent

g6 Ol

081 LaN

026 626

A% ‘Pusyanoj=1e abessaul
A% ‘anouyanolzine abessel - 006
A% eisuonol=pneabessaw

k swwe S vowe: S0 woe |

/

¢
£

o e o e

= NODSELOO!

076I8LLLOIGIIEIZILINIB 8 L O GV & 2 /

[

I

o

N\\ T~y - \\W““

: ”_
7
/

|/ sainysaba)einew dde \

/

[/
66 516

U.S. Patent Jul. 1, 2025 Sheet 11 of 30 US 12,346,399 B2
1001 1005 1010 1015 1020
\ \ \ \ \
e Device Connect Platform
Current App 1D UuiD Authentication leface

. RS, {ui: true,

Game 1234-45678-90ab None - ipsi.)
. <himl with {ul: true,

NFT Lab 1234"87654"903b logm/paSSWd> Uﬂ“hﬁpS// ‘‘‘‘‘‘ u}
.\ e <himl with {ui:true,

gf:fgrencing 123 8r6u4-ab loginipasswd> url - “hitpsil....."}
<htmi with {ui; false,

> Door B0 s> ol ips)

FIG. 10

U.S. Patent Jul. 1, 2025 Sheet 12 of 30 US 12,346,399 B2
. -1 message; — |10
 message: evt:g“stream\/ideoAudiolStream\/ideo”
?"y‘z louchsta, mousestat data: dataimagelpng;haseBd
171 ‘
_-»message: /.1104 m mess'age: N8
evt ="swipe right’ avt: Stream
X2 pZ funnet. Tunnel
194 tunnellD :id
Videostream,
130 audioStream,
\ webRTC Offer
1106
message:f — 1Y
el up_key_down O et “StreamAudio’
. %{ data; AudioBuffer.|
message; _— 3
evt; Stream
tunnel: Tunnel
tunnellD : id
audiostream,
“g WebRTC Offe
.~ :
message: — message.
1 v Bhey_down et "accel
Sl . 1140 ime,
T RN P ~ accel ¥,
aceel_y,
|
"6 3D Gestures R
7\8 ; message: — 1118
BRI avt: 7 Keypress 50
ANE > ™ MESSEE e
101, avt ‘card’ —"
data: KeyUp, keyCode
CardReader >
120
~N message: — 1122

evt: imagelpng,
data: dataimage/png;baset4

FIG. 11

U.S. Patent Jul. 1, 2025 Sheet 13 of 30 US 12,346,399 B2
120
e !
USB Virtual Router Vs 1202 1904 6
Destination PortSource =~ / .
IP Address USBID 8000 IP Address USBID USB WehCam
] - | WebSocket Streamer
Emulator
USBIP P Client
WebRTC
__________________ 08 1909 || RTCPeerConnection
~~~~~~~~~~~~~~~ v Y $( Nagitator’) authorizeAccess()
! Emulator L o 1250
o ¥ ¥ ¥ 0¥ / ICE Server /
PN H‘D IICA*MOHCA*MHICA*MZI | CAMvEMU , STUN eglacorp.com:19302
§ms\ Erulaied Web Clent f 120
§ DEVICE CONNECT PLATFORM /
§ web integration code -+ Data Gonnect
S P B b - ! Platform Interface ”
A0
1218 Y <
\\ Device Connect Platform Controller Server
RTC Server n
1228 ’ '
mevia-rep s gestures 5 e [1224
YL s? |
9 ream
Remote 0
1933 Local navigatormediaDevices. / % 1925
\ Sereen Cagt getUserMedia({audio: true}, | reaOm f

FIG. 12A



US 12,346,399 B2

Sheet 14 of 30

Jul. 1, 2025

U.S. Patent

azl ‘ol4 A Pt
Q 080iA SI0UIAY
GapiA, 007
pags) ‘fenut :opnelepapyiasniel «
s SaeqEIpaLIoehiARY | Gopi) spouiey
eahg _ ( BEIN_
b sfeaimsaf ckel soouonebauigan | ShucamBel [
4 i i
4! _
RSBl 1B 01 Wiojeld euter) 0pe(
4} 4 0174
\ SOBLIBYU} ULOE|4 10807 838 Y
052 g O.x UsByyiAT ueBiesn

037, 1883 Wi 1aU0d 20ag] 0 AH0Id 7 MCAH DOIEL] wm_
spoo wogeSe gon | Shoucewepal 4
ya

gL WeANS S | QLuem
- v

gm@”%u_egmwm@,% OPSI{C0RIBNaS ST JADSTQ00GLIaNES SSh
\ gm_\\. ZRRd JLHUsM 0006 LoadlidGem
067 , - LUOISSES 1O d0IS 1000 (s ianies 55m
(S5 sipogen UOISSBS 104 d0S 0003 10DS anas Ss

Bt
-

DLt 05 Wg  Vojeuseq
-1 S 0} sotdeyy 2 14O9M 0 DLy BBt




U.S. Patent Jul. 1, 2025 Sheet 15 of 30 US 12,346,399 B2

1288~
~ USB or WebRTC Peer
Wapper Device Connact Platform Server - Display {stream Video + Audio)
128~ l
Web Socket <video>
S T <PyersPEG=paddress S0meviapy
ipacdress:800Tmeviapy aYeI [SFLoApacaess b mevapD
1280~ 4
FFMPEG
Puppetieer
Caplure Screens 1250
(mpagdvide,
mp2 audio)
12
1218~ ! Davice Connect Piatiomn Interface /
{
Device Connect Platiorm RTC Server Confroller Server
l A 4 1224
¥ l v |
mevig-webricjs | Web infegration code 9% gesturess WehSocket llwenmre
N 1201~ Siream
L navigatormediaDevices. 1954
" Remole o getUserMedial{audio: true}, {stream) 7
Local Video | |
Remote Video O
123" 125"

FIG. 12C



U.S. Patent Jul. 1, 2025 Sheet 16 of 30 US 12,346,399 B2

WINDOWS MESSAGING ROUTER
Destination ~ WM_message Port Source
{P Address WM_CLOSE 8000 IPAddress TAP 100,100

(310~ [IPAddress WM LBUTTONDOWN 1P Address touchstart 400,100
IP Address WM_MOUSEMOVE xy P Address MouseMove 300,100
{P Address WM _LBUTTONUP P Address fouchend 400,100

i
WSS or webric routing
ApplD - UUID Destination
WebRTCPeer | 1305 19N [Q001 G55-141405135  wes:ipaddress:8001/ofice
apper N0 4554041445135 wes:ipaddress B001skype
‘ 1010 4554141445135 SOP WebRTC Server
1300 (b} , 1338
\éVeb ok ‘USB Virual WSV\%;{?Z}&C /1;0 1322
eIver itua 6
ipaddress:800tioffice | Router / MEVIVERSE | /
| onfroller Server evice Connect Platform Server
I Qfg Conler§ Device ComeetPlafom S
FRVPEG I R I
fﬂ%’é‘g;@ggens USB WebCam/ | | gesturesjs /| |webintegraton code
mpz audiO) , Eim“ator o o I <diV Class=”jsmpeg”> -
© | |1<Player jSMPEG
19502 1308 Mouse Emulator X} < || ur="websocket{jradcress:8001/office™
1307\ , .......... ’ >
UsaRly | L S\ \
MEVIA Legacy \ 1333
{=e| Controller App 193
WindowsProc
) \
1304 1306

FIG. 13



U.S. Patent Jul. 1, 2025 Sheet 17 of 30 US 12,346,399 B2

Adaptive HLS 1405
Stream from M3U8 Accesslog /
Stream(-4 s Straam(.fs P clientd - .. 6/04/2022:16:55:00 - 007 “GET Streamd.ts”
Stream0-bis || Streamlts IP_client! - ... 6/04/2022:16:55:12 - 007 "GET Stream(-6.s"
Stream(-6.s Straam? fs P client?- ... 6/04/2022:16:55:13 - 007 ‘GET Stream0-11.15"
Stream(-7ts || Streamd.ts
Stream(-1s || Streamd.ts
Steam03ts || Streamd.is
Stream(-104s 1] Streamfis
| Streaml-1145 il Steam/fs |
/ / Client OJog Client 1.Jog Client 2log
1410 1420
1430~ GETstreamdts | | GETstream0-bts | | OET stream(-1ts
FIG. 14A
140
/ DEVICE
Capture or Pit Video from TV Device Connect Platiorm 1440
‘ Interface /
streamlto ﬁmp.//ﬁmp.mev&a.tv/h‘ve/detect 2 FingSteam on Clet Lo
Send Pict via SMS, WhatsApp, iMessage
1438~ Send Video via SMS, WhatsApp, Message Y
14y Highest Cross Comelation
Y
1448 14441 meviaVerse.createQRCode(TIMEQUT)
- M~ TevaVerse sanController(ti
Scan QR Code and connect to MEVIAVERSE | Vor Dispay|

FIG. 14B



US 12,346,399 B2

Sheet 18 of 30

Jul. 1, 2025

ol Old

U.S. Patent

SPERH My L0
i
(A BI0 DO
W 0HINGD
AL
4 0HINDD
L
=TT e
w “amn G L amn
/\, < T~ { GNA { < T~ ,
Y A
£ ULORRI4 OO B0Iaq | 7 gl ouse) Savaq | | LogRl helies e "o | e ety a7 Liojeig ey BMQ| | Liogeg R 8913
| R _ \ _ SRR, _
\\
AL &bt WAL




U.S. Patent Jul. 1, 2025 Sheet 19 of 30 US 12,346,399 B2

1500~ Read Access.log from Al sources for Smart TVs
1505~ . .
All Sourcas = Find al posaible logs based on IP Source
1510 7)\
it AllSources>!
515~ l
Load N frames from Mobile
from MobileNumer
1520 Y
For All Sources, Sireams]] e
Y 1528
Gross Comelation of N Frames with Streamsf]
Ri= frg= 10100 fos
150~ v/
location = Geftocation{Max(Ri) location = Get Location(Sourcei0})
|
153~
gr=GenerateQRCode( TWECUT, location, auth=true)
1540~ Y
sendQReods_to{TV=lrue, SMS=true, WhatsApp=MobileNumber)

FIG. 15



U.S. Patent Jul. 1, 2025 Sheet 20 of 30 US 12,346,399 B2

1605 1610 1615

1600 ~L D ‘\\‘ \\ \\
gvice
1603 Connget || AppUl \éVTIFI/
- HDu Patom || »m
Web Integration Code o
chromiumOS

. i
QRCode
FIG. 16A
Dongle Mobile Phone
1650~
EValue = Generate Encrypt{UUID, PubKey)
1§54~ ' 168
QRCode = meviaverse+'7+ EValue  |—» Scan QR Code
1665~ — Y 1660
Disolay Waiting UUID= Decrypt(E, Private Key)
5Py’ BLE WIF UUID activate =True,
1670~ Y 1675
HEGTT Configure WIF! «——  Enter BLE WIF! Programming Mode

FIG. 168B



U.S. Patent Jul. 1, 2025 Sheet 21 of 30 US 12,346,399 B2
1708 1716
170 / /
Device Connect \
Clen Piatform Inferface Clen
gesturess web integration code
FIG. 17A
1725 1730
17 / /
, Device Connect x
Cle Platform: Inferface Clet
Jestires s wel integration code
web integration code gesiure.is
FIG. 178
1745 1750
174 / /
Clert Desice Gonnect Clent
Platform Inferface
gesturess web infegration code

web infegration code

1755

Client

web infegration code

FIG. 17C

qesie s



US 12,346,399 B2

Sheet 22 of 30

Jul. 1, 2025

U.S. Patent

8l Ol Q0B BIOJBI
JBUION B08g
SIH0S0aM, Bugnoy usog N
0L 7
fuddeyy | aseqeleq ainn | |
078~ BNy ey 50040 | 048
mwﬁ )
[l pueruioo 7 ey
! 7A% ‘wa } Bow ' 7% e Hisw~{_ -
| ssse ‘semu | | | - -
QG111 WY | shemeung 'apoo uonesBai g WY | sisamsd_
s LK | N—zop
13088 g | H '
TiH TIH Johiag
\ 000
19RIBS BIRa
A / " A Lo
tsafiy ddy go N_,ﬁ gm
3081 eoe 8
G081




U.S. Patent Jul. 1, 2025 Sheet 23 of 30 US 12,346,399 B2
1900 1904
1902
\ \ 1904 \
Controller e | )
Device Connect Platiorm Server R —
Sener i, Ome=(_]
i8, 635,
1910~ media
message e initController message.command 1906
\
QRCode, AppID, Tunnel 1908
1940\ UUID, Database - Mg T
message.command | o WebRTS or
and Roufing WebSockets
i 1915 message.command
initController
message.evt message.command
V 1904
Controller - I )
Device Gonnect Platiorm Server -
Sene - O]
J5, €58,
l media
1920
a1 bl
© I O==(]

FIG. 19



U.S. Patent Jul. 1, 2025 Sheet 24 of 30 US 12,346,399 B2

Device Connect

Platform Interface
F - == 7= =
|| QRCode, ApplD, Tunngl |
e~ 4| UUID, Dataase Mapping |
| for WebRTS or |
| and Routing WebSockets I

A
] L i |
__....:._, 'contro!!er Mevia Server :
b e e e e e e oo o b e

2022 HTML, JavaScript—" a8 2020 2030
- § R - L o —

Caching Music and Video
2025 ,

2040

, Multicast, CABSAT

0 O
Q00 0 O
000!

Cable & Satellte {e.g. COMCAST, DirectTV)

FIG. 20



U.S. Patent Jul. 1, 2025 Sheet 25 of 30 US 12,346,399 B2
fappiD?, S 2t
M0 packet=  UUID,
Device connect plaorn Mmessage.ev,
[ BT [etmssatxyz KB mesa 200 o o
ApplD1 240 LI [y
‘ Touch initController
Device connect platformc \b i - 0 AppiD1 I
o anvas=hasebd,mgipng
N AoplD2 7 Audio = stream]..] Audg 2 ,,2126
il 214) e | SontlefUUIDZ] [ ntContoler
- evt.swzpe_Rzght . [Ropicatn ‘/ Content | Applzlzio Il
N\ ey=<Ci Mapper | | Queve 1 Qrri3 2132
Device connect platform I  Gestres é
o 0UD3 | et | _Feypat_| oyl | pConter
ApplD2 Command
Zm\$(”#slider”).next(); o (S ‘ ,2136
Devics connect platorm sl e | | 258 ~Tlage Wend gg&%%l[er[UUlDai] niConfoler
ApplD! ¥ 1 Bandwidth, 2150
javascript || Initiize | | Load | Load perApp,~" 15
Maco || Controller] | Balancer | QoS
- Convete i Payment, Game Controller, Microphone, ete
: 2165 2168 2170
Content Routing ) ) )
LD ApplD QRUT | Auth’ PrevhppiD ¢ Current Coniroller
DT Aol Qurt | HmD AoD0, AgplDl KeyB
D2 A2 QUR | hmit AppiDd Touch
UuID3 ApplD3 QUA3 | himi2 AppiDD Videot+Audio
UUDE  ApDd QU | Wm3 Appl0 Magic Wand




U.S. Patent Jul. 1, 2025 Sheet 26 of 30 US 12,346,399 B2
- 205 om0 i\
\ _ \ \ Up, Dow,
Left, Right,
R Delay | Sewer —»| Clean Dats Push, Pul
{ime, = {tme:Delay Go Back, Circle
Acoeleromeer  accel, X 80c8L, Character
aocely, y: a0cely, Number
accelz} Zaceel.z}
Data Capturing
FIG. 22A
{'"1648337558415, h VAL
W{.34653102582171%6, | -
"0 S02360B810662745 — M DOVIN GESTURE
'!"Z.i"i'-0,7679751076780259}
A7 A O B L N -
0 A500206565T360444 i
y"-0.024120880293806594,
'7"-(.24930209308266638)
Training
FIG. 22B -
018 m U\D
0, Down,
\ \ Left, Right,
Aocelx,y, 2, Push, Pul,
et L0021 NN > o RemoleNN = GoBack,
{ x:Accel.x, Circle,
yAcoely, Character,
” zAocelz, Number
t}
Detection

FIG. 22C



U.S. Patent Jul. 1, 2025 Sheet 27 of 30 US 12,346,399 B2

= €%05
[ Weviaverse I '
Davice Comnect Platiorm 1| Device Connect Platform 2|1 Divioe Connest Piatom 31{Other.
e N
BB gy 210
= Eek
QR Code
2312
FIG. 23A
2812 2310
i }
l Meviaverse | / !

Device Comect Plaform 2| Device Comect Piatorm 3 [iDevice Comnect Pt 4 ) Other.

Game Application
53&'@\2 ZEEEEN \"%
..&:w—

R Code

FIG. 23B

232\5 A CHOOSERGE =
app.mevia vigestures 7 L& PAC-MAN l

O L& MS.PAC-MAN
& _COOKE - MAN

(2 [EARN

FIG. 23C




U.S. Patent Jul. 1, 2025 Sheet 28 of 30 US 12,346,399 B2
12410
2420
/ Socket0
3DApp.mevia.tv:3000/cal Command
3DApp.mevia.tvical '

2/414 3Dmevia,s |-l
http htips i web integration code L
GET /App ) . |- 242

Standard
Converter Web App |- 2426
href HTML Page

3D Canvas

2430 <

(" socket.on("KeyAcce!" functionmessage) {

8C0el.X = message.x, ,
accel.y =messagey,  Loremipsum
accel.z = message.z,

|||||

accelereometer = new MeviaAccelerometer(.... XyZ ... )

FIG. 24



U.S. Patent Jul. 1, 2025 Sheet 29 of 30 US 12,346,399 B2

Initialize Authentication with Gestures 20
! 250
> Train Authentication Gestures with Accel Data ~
Y D50 ]
TrainingData = Sequence[ Accel Data ... ]
Y a1t
Go into Test Data, Capture Accel Data -
Y 500 T
Validate Correlation with Training
Save Neural Network for Use 20

FIG. 25



U.S. Patent
2600

N

Jul. 1, 2025 Sheet 30 of 30

US 12,346,399 B2

GENERATE AFIRST MESSAGE FOR AFIRST
BROWSER EXECUTED ON A FIRST COMPUTING
DEVICE, THE FIRST MESSAGE INCLUDING
INSTRUCTIONS THAT IN RESPONSE TO BEING
EXECUTED BY THE FIRST BROWSER CAUSES A
REPRESENTATION OF AN INTERFACE OF A
PHYSICAL USER INPUT DEVICE TO BE
DISPLAYED BY THE FIRST BROWSER

P

l

PROVIDE THE FIRST MESSAGE TO THE FIRST
BROWSER

2504

l

GENERATE A SECOND MESSAGE FOR A SECOND
BROWSER EXECUTED ONA SECOND
COMPUTING DEVICE, THE SECOND MESSAGE
INCLUDING INSTRUCTIONS THAT WHEN
EXECUTED BY THE SECOND BROWSER ENABLES
USER INTERACTION WITH GONTENT PROVIDED
BY THE SECOND BROWSER IN RESPONSIVE TO
INPUT FROM THE REPRESENTATION OF THE
INTERFACE OF THE PHYSICAL USER INPUT
DEVICE DISPLAYED BY THE FIRST BROWSER,
WHEREIN THE PHYSICAL USER INPUT DEVICE IS
CONFIGURED TO INTERACT WITH THE CONTENT
PROVIDED BY THE SECOND BROWSER

2506

l

PROVIDE THE SECOND MESSAGE TO THE
SECOND BROWSER

2608

FIG. 26



US 12,346,399 B2

1
METHOD AND SYSTEM FOR A WEB
INTERACTION WITH OBJECTS AND
REMOTE DISPLAY TECHNOLOGIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application Ser. No. 63/456,018, filed Mar. 31, 2023, and
entitled “Method and System for a Web Interaction with
Objects and Remote Display Technologies,” the entirety of
which is incorporated by reference herein.

FIELD OF THE DISCLOSURE

The present systems, apparatuses, and methods lie in the
field of communications and processing and, more specifi-
cally, to methods and systems for the creation of a distrib-
uted system for processing a controller using a mobile phone
and smart televisions as display, while the infrastructure
handles all message passing from controllers to applications
in a distributed system with decentralized processing as a
traditional operating system handles /O events and tasks.

BACKGROUND OF THE DISCLOSURE

Traditional implementations of remote management and
control of computers rely on protocols such as “Remote
Desktop Protocol” (RDP), “Virtual Network Computing”
(VNC) also known as RFB Protocol, Citrix “Internet Com-
puter Architecture” (ICA) as well as other proprietary
mechanisms, both client and server software, to remotely
control and manage a personal computer (PC), laptop, tablet,
mobile, or set top box.

In today’s digital landscape, many smart televisions are
limited to control by native applications designed for use
with a remote control. Predominately, these applications
serve streaming purposes and are not designed for dynamic
interaction with mobile computing devices. A solution is
needed that enables seamless interactive user experiences
with a television via a mobile computing device.

SUMMARY OF THE DISCLOSURE

An aspect of the disclosed embodiments includes a
method. The method comprises: generating a first message
for a first browser executed on a first computing device, the
first message including instructions that in response to being
executed by the first browser causes a representation of an
interface of a physical user input device to be displayed by
the first browser; providing the first message to the first
browser; generating a second message for a second browser
executed on a second computing device, the second message
including instructions that when executed by the second
browser enables user interaction with content provided by
the second browser in responsive to input from the repre-
sentation of the interface of the physical user input device
displayed by the first browser, wherein the physical user
input device is configured to interact with the content
provided by the second browser; and providing the second
message to the second browser.

Another aspect of the disclosed embodiments includes a
system. The system comprises: at least one processor circuit;
and at least one memory that stores instructions to be
executed by the at least one processor circuit. The instruc-
tions are configured to perform operations that comprise:
generating a first message for a first browser executed on a

15

20

25

30

35

40

45

2

first computing device, the first message including instruc-
tions that in response to being executed by the first browser
causes a representation of an interface of a physical user
input device to be displayed by the first browser; providing
the first message to the first browser; generating a second
message for a second browser executed on a second com-
puting device, the second message including instructions
that when executed by the second browser enables user
interaction with content provided by the second browser in
responsive to input from the representation of the interface
of the physical user input device displayed by the first
browser, wherein the physical user input device is config-
ured to interact with the content provided by the second
browser; and providing the second message to the second
browser.

Another aspect of the disclosed embodiments includes a
computer-readable storage medium having program instruc-
tions recorded thereon that, when executed by at least one
processing circuit of a computing device perform a method.
The method comprises: generating a first message for a first
browser executed on a first computing device, the first
message including instructions that in response to being
executed by the first browser causes a representation of an
interface of a physical user input device to be displayed by
the first browser; providing the first message to the first
browser; generating a second message for a second browser
executed on a second computing device, the second message
including instructions that when executed by the second
browser enables user interaction with content provided by
the second browser in responsive to input from the repre-
sentation of the interface of the physical user input device
displayed by the first browser, wherein the physical user
input device is configured to interact with the content
provided by the second browser; and providing the second
message to the second browser.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures, where like reference numerals
refer to identical or functionally similar elements throughout
the separate views, which are not true to scale, and which,
together with the detailed description below, are incorpo-
rated in and form part of the specification, serve to illustrate
further various embodiments and to explain various prin-
ciples and advantages all in accordance with the systems,
apparatuses, and methods. Advantages of embodiments of
the systems, apparatuses, and methods will be apparent from
the following detailed description of the exemplary embodi-
ments thereof, which description should be considered in
conjunction with the accompanying drawings in which:

FIG. 1 is a block diagram of an exemplary embodiment of
device connect applications and architecture for a web
iteration with objects and remote display technologies;

FIG. 2 is a diagrammatic illustration of exemplary
embodiments of a controller for a paint palette and a game
controller for the architecture of FIG. 1;

FIG. 3 is a diagrammatic illustration of exemplary
embodiments of a controller for a keyboard, a camera, and
a microphone for the architecture of FIG. 1;

FIG. 4 is a diagrammatic illustration of exemplary
embodiments of a client and server architecture and mes-
saging using Socket]O and WebSockets and interaction with
smart televisions for the architecture of FIG. 1;

FIG. 5 is a flow chart for an exemplary embodiment of a
method to enable a server-based interface to serve a smart
television in the device connect platform architecture of
FIG. 1,



US 12,346,399 B2

3

FIG. 6 is a flow chart for an exemplary embodiment of a
method to enable a server-based interface to server a con-
troller for a device connect platform application

FIG. 7(a) is a diagrammatic illustration of an exemplary
embodiment of a WebSocket architecture for communica-
tions;

FIG. 7(b) is a diagrammatic illustration of an exemplary
embodiment of a WebRTC architecture for communications;

FIG. 7(c) is a diagrammatic illustration of an exemplary
embodiment of a WebRTC w/Tunnel architecture for com-
munications;

FIG. 8(a) is a diagrammatic illustration of an exemplary
embodiment of a swipe-right-interaction to load a game
controller and a game application of FIG. 8(¢) serviced by
the DEVICE CONNECT PLATFORM into a smart televi-
sion;

FIG. 8(b) is a diagrammatic illustration of an exemplary
embodiment of a tap interaction to load the game controller
and a game application of FIG. 8(c) serviced by the device
connect platform into a smart television;

FIG. 8(c) is a diagrammatic illustration of an exemplary
embodiment of a game controller and a game application
serviced by the device connect platform for use on a smart
television;

FIG. 9(a) is a diagrammatic illustration of an exemplary
embodiment of selecting an application using hand interac-
tions for a drawing application;

FIG. 9(b) is a diagrammatic illustration of an exemplary
embodiment of a drawing interaction in the drawing appli-
cation selected in FIG. 9(a);

FIG. 10 is a diagrammatic illustration of an exemplary
embodiment of mapping QR codes to applications and
device connect platform interfaces to load;

FIG. 11 is a diagrammatic illustration of exemplary
embodiments of controllers used in device connect platform
applications including touchpad, video, controller, audio,
keyboard, 3d gestures, phone keyboard, card reader, and
imaging;

FIG. 12(a) is a block diagram of an exemplary embodi-
ment of a device connect platform multimedia application
and integration with USB WebCameras and other USB
devices over IP;

FIG. 12(b) is a block diagram of an exemplary embodi-
ment of a device connect platform system with WebRTC and
WebSockets;

FIG. 12(c) is a block diagram of an exemplary embodi-
ment of device connect platform streaming using CANVAS
and a web application;

FIG. 13 is a block diagram of an exemplary embodiment
of device connect platform remote access for a Windows
computer,

FIG. 14(a) is a block diagram of an exemplary embodi-
ment of detecting streams using contextual awareness;

FIG. 14(b) is a block diagram of an exemplary embodi-
ment of capturing a screen to eliminate the need of a QR
Code;

FIG. 14(c) is a diagram displaying Smart TV detection
using Ultra-wide Band (UWB) and positioning instead of a
QR Code.

FIG. 15 is a flow chart for an exemplary embodiment of
a method of detecting location based on a smart television
display video feed;

FIG. 16(a) is a diagrammatic illustration of an exemplary
embodiment of a dongle with a QR Code and Bluetooth Low
Energy WIFI provisioning;

25

35

40

45

50

55

4

FIG. 16(5) is a block diagram of an exemplary embodi-
ment of method for interacting the dongle and QR Code of
FIG. 16(a) with Bluetooth Low Energy WIFI provisioning;

FIG. 17(a) is a block diagram of an exemplary embodi-
ment of a combination of gesture.js and mevia.js and their
use in the device connect platform architecture of FIG. 1;

FIG. 17(b) is a block diagram of an exemplary embodi-
ment of a combination of gesture.js and mevia.js and their
use in the device connect platform architecture of FIG. 1;

FIG. 17(¢) is a block diagram of an exemplary embodi-
ment of a combination of gesture.js and mevia.js and their
use in the device connect platform architecture of FIG. 1;

FIG. 18 is a block diagram of an exemplary embodiment
of' a method of processing messages in the device connect
platform architecture of FIG. 1;

FIG. 19 is a diagrammatic illustration of an exemplary
embodiment for message.evt and message.command pro-
cessing in the device connect platform architecture of FIG.
1

FIG. 20 is a diagrammatic illustration of an exemplary
embodiment of integration of the device connect platform
architecture of FIG. 1 to Broadcasting Platforms and Sys-
tems;

FIG. 21 is a block diagram of an exemplary embodiment
of content routing apparatuses and systems for commands
and messages from a controller in the device connect
platform architecture of FIG. 1;

FIG. 22(a) is a diagrammatic illustration of an exemplary
embodiment of data capturing for a controller that will be
trained using a Neural Network or Deep Learning using
LSTM or other Neural Network;

FIG. 22(b) is a diagrammatic illustration of an exemplary
embodiment of training the neural network to match differ-
ent commands using a controller.

FIG. 22(¢) is a diagrammatic illustration of an exemplary
embodiment of detection of movements used by a controller
system with Deep Learning or Neural Networks;

FIG. 23(a) is a diagrammatic illustration of an exemplary
embodiment of a swipe-right-interaction to load a game
controller and a game application of FIG. 8(¢) serviced by
the device connect platform into a smart television;

FIG. 23(b) is a diagrammatic illustration of an exemplary
embodiment of a tap interaction to load the game controller
and a game application of FIG. 8(c) serviced by the device
connect platform into a smart television;

FIG. 23(c) is a diagrammatic illustration of an exemplary
embodiment of a game controller and a game application
serviced by the device connect platform for use on a smart
television;

FIG. 24 is a diagrammatic illustration of an exemplary
embodiment of a device connect platform Application that
maps 3D gestures to 3D display actions using 3DMevia.js;
and

FIG. 25 is a block diagram of an exemplary embodiment
of a method for authenticating access or recognizing ges-
tures for a device connect platform application using gesture
driven tools.

FIG. 26 generally illustrates a flow diagram of a method
for enabling a user to control and interact with content on a
computing device using a browser interface on another
computing device, according to the principles of the present
disclosure.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

As required, detailed embodiments of the systems, appa-
ratuses, and methods are disclosed herein; however, it is to



US 12,346,399 B2

5

be understood that the disclosed embodiments are merely
exemplary of the systems, apparatuses, and methods, which
can be embodied in various forms. Therefore, specific struc-
tural and functional details disclosed herein are not to be
interpreted as limiting, but merely as a basis for the claims
and as a representative basis for teaching one skilled in the
art to variously employ the systems, apparatuses, and meth-
ods in virtually any appropriately detailed structure. Further,
the terms and phrases used herein are not intended to be
limiting; but rather, to provide an understandable description
of the systems, apparatuses, and methods. While the speci-
fication concludes with claims defining the features of the
systems, apparatuses, and methods that are regarded as
novel, it is believed that the systems, apparatuses, and
methods will be better understood from a consideration of
the following description in conjunction with the drawing
figures, in which like reference numerals are carried for-
ward.

In the following detailed description, reference is made to
the accompanying drawings which form a part hereof, and
in which are shown by way of illustration embodiments that
may be practiced. It is to be understood that other embodi-
ments may be utilized, and structural or logical changes may
be made without departing from the scope. Therefore, the
following detailed description is not to be taken in a limiting
sense, and the scope of embodiments is defined by the
appended claims and their equivalents.

Alternate embodiments may be devised without departing
from the spirit or the scope of the disclosure. Additionally,
well-known elements of exemplary embodiments of the
systems, apparatuses, and methods will not be described in
detail or will be omitted so as not to obscure the relevant
details of the systems, apparatuses, and methods.

Before the systems, apparatuses, and methods are dis-
closed and described, it is to be understood that the termi-
nology used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting. The
terms “comprises,” “comprising,” or any other variation
thereof are intended to cover a non-exclusive inclusion, such
that a process, method, article, or apparatus that comprises
a list of elements does not include only those elements but
may include other elements not expressly listed or inherent
to such process, method, article, or apparatus. An element
proceeded by “comprises . . . a” does not, without more
constraints, preclude the existence of additional identical
elements in the process, method, article, or apparatus that
comprises the element. The terms “including” and/or “hav-
ing,” as used herein, are defined as comprising (i.e., open
language). The terms “a” or “an”, as used herein, are defined
as one or more than one. The term “plurality,” as used
herein, is defined as two or more than two. The term
“another,” as used herein, is defined as at least a second or
more. The description may use the terms “embodiment” or
“embodiments,” which may each refer to one or more of the
same or different embodiments.

The terms “coupled” and “connected,” along with their
derivatives, may be used. It should be understood that these
terms are not intended as synonyms for each other. Rather,
in particular embodiments, “connected” may be used to
indicate that two or more elements are in direct physical or
electrical contact with each other. “Coupled” may mean that
two or more elements are in direct physical or electrical
contact (e.g., directly coupled). However, “coupled” may
also mean that two or more elements are not in direct contact
with each other, but yet still cooperate or interact with each
other (e.g., indirectly coupled).

10

15

20

25

30

35

40

45

50

55

60

65

6

For the purposes of the description, a phrase in the form
“A/B” or in the form “A and/or B” or in the form “at least
one of A and B” means (A), (B), or (A and B), where A and
B are variables indicating a particular object or attribute.
When used, this phrase is intended to and is hereby defined
as a choice of A or B or both A and B, which is similar to
the phrase “and/or”. Where more than two variables are
present in such a phrase, this phrase is hereby defined as
including only one of the variables, any one of the variables,
any combination of any of the variables, and all of the
variables, for example, a phrase in the form “at least one of
A, B, and C” means (A), (B), (C), (A and B), (A and C), (B
and C), or (A, B and C).

Relational terms such as first and second, top and bottom,
and the like may be used solely to distinguish one entity or
action from another entity or action without necessarily
requiring or implying any actual such relationship or order
between such entities or actions. The description may use
perspective-based descriptions such as up/down, back/front,
top/bottom, and proximal/distal. Such descriptions are
merely used to facilitate the discussion and are not intended
to restrict the application of disclosed embodiments. Various
operations may be described as multiple discrete operations
in turn, in a manner that may be helpful in understanding
embodiments; however, the order of description should not
be construed to imply that these operations are order depen-
dent.

As used herein, the term “about” or “approximately”
applies to all numeric values, whether or not explicitly
indicated. These terms generally refer to a range of numbers
that one of skill in the art would consider equivalent to the
recited values (i.e., having the same function or result). In
many instances these terms may include numbers that are
rounded to the nearest significant figure. As used herein, the
terms “substantial” and “substantially” means, when com-
paring various parts to one another that the parts being
compared are equal to or are so close enough in dimension
that one skill in the art would consider the same. Substantial
and substantially, as used herein, are not limited to a single
dimension and specifically include a range of values for
those parts being compared. The range of values, both above
and below (e.g., “+/=" or greater/lesser or larger/smaller),
includes a variance that one skilled in the art would know to
be a reasonable tolerance for the parts mentioned.

It will be appreciated that embodiments of the systems,
apparatuses, and methods described herein may be com-
prised of one or more conventional processors and unique
stored program instructions that control the one or more
processors to implement, in conjunction with certain non-
processor circuits and other elements, some, most, or all of
the functions of the systems, apparatuses, and methods
described herein. The non-processor circuits may include,
but are not limited to, signal drivers, clock circuits, power
source circuits, and user input and output elements. Alter-
natively, some or all functions could be implemented by a
state machine that has no stored program instructions, or in
one or more application specific integrated circuits (ASICs)
or field-programmable gate arrays (FPGA), in which each
function or some combinations of certain of the functions
are implemented as custom logic. Of course, a combination
of these approaches could also be used. Thus, methods and
means for these functions have been described herein.

The terms “program,” “software,” “software application,”
and the like as used herein, are defined as a sequence of
instructions designed for execution on a computer system or
programmable device. A “program,” “software,” “applica-
tion,” “computer program,” or “software application” may



US 12,346,399 B2

7

include a subroutine, a function, a procedure, an object
method, an object implementation, an executable applica-
tion, an applet, a servlet, a source code, an object code, any
computer language logic, a shared library/dynamic load
library and/or other sequence of instructions designed for
execution on a computer system.

Herein various embodiments of the systems, apparatuses,
and methods are described. In many of the different embodi-
ments, features are similar. Therefore, to avoid redundancy,
repetitive description of these similar features may not be
made in some circumstances. It shall be understood, how-
ever, that description of a first-appearing feature applies to
the later described similar feature and each respective
description, therefore, is to be incorporated therein without
such repetition.

Although the systems, apparatuses, and methods are illus-
trated and described herein as embodied in systems and
methods for a web interaction with objects and remote
display technologies, it is, nevertheless, not intended to be
limited to the details shown because various modifications
and structural changes may be made therein without depart-
ing from the spirit of the disclosure and within the scope and
range of equivalents of the claims. Additionally, well-known
elements of exemplary embodiments will not be described in
detail or will be omitted so as not to obscure the relevant
details of the systems, apparatuses, and methods.

Additional advantages and other features characteristic of
the systems, apparatuses, and methods will be set forth in the
detailed description that follows and may be apparent from
the detailed description or may be learned by practice of
exemplary embodiments. Still other advantages of the sys-
tems, apparatuses, and methods may be realized by any of
the instrumentalities, methods, or combinations particularly
pointed out in the claims.

Other features that are considered as characteristic for the
systems, apparatuses, and methods are set forth in the
appended claims. As required, detailed embodiments of the
systems, apparatuses, and methods are disclosed herein;
however, it is to be understood that the disclosed embodi-
ments are merely exemplary of the systems, apparatuses,
and methods, which can be embodied in various forms.
Therefore, specific structural and functional details dis-
closed herein are not to be interpreted as limiting, but merely
as a basis for the claims and as a representative basis for
teaching one of ordinary skill in the art to variously employ
the systems, apparatuses, and methods in virtually any
appropriately detailed structure. Further, the terms and
phrases used herein are not intended to be limiting; but
rather, to provide an understandable description of the
systems, apparatuses, and methods. While the specification
concludes with claims defining the systems, apparatuses,
and methods of the disclosure that are regarded as novel, it
is believed that the systems, apparatuses, and methods will
be better understood from a consideration of the following
description in conjunction with the drawing figures, in
which like reference numerals are carried forward.

Embodiments disclosed herein are directed to a device
connect platform that addresses limitations of existing tech-
nologies such as Remote Desktop Protocol (RDP). The
device connect platform eliminates the need for RDP by
using standard Hypertext Transfer Protocol (HTTP) and
video tags, making it possible to access remote units without
a transcoding server. The device connect platform enables
users to control web applications using mobile computing
devices such as tablets, smart phones, augmented reality
glasses, virtual reality devices, or any other device that can
display information. These mobile computing devices act as

10

15

20

25

30

35

40

45

50

55

60

65

8

controllers, and the need for a traditional controller interface
is eliminated. Additionally, the platform employs video
encoding to project remote screens into a web browser. For
example, the capabilities of JavaScript are used to transform
a mobile computing device into a physical user input device
(e.g., mouse, keyboard, game controller). This allows users
to send touch commands to a remote server that is displayed
on a computing device, such as a smart television.

Remote management is achieved by forwarding touch
commands from the mobile web browser to a remote com-
puting device, which can be displayed on a smart television
or streamed through various protocols such as Web Real-
Time Communication (WebRTC), Real-Time Messaging
Protocol (RTMP), HTTP Live Streaming (HLS), or DASH
protocols, that are compatible with web browsers. The
platform further supports adaptive video quality, meaning it
can adapt to different network conditions and device capa-
bilities. For example, the platform can switch video resolu-
tion and quality based on a needs of a user.

The platform serves as a decentralized or distributed
operating system. It connects web applications and mobile
computing devices that become controllers for web appli-
cations displayed on smart televisions, AR and VR displays
(Augmented Reality and Virtual Reality), and projectors.
The system utilizes JavaScript/CSS libraries (e.g., “ges-
tures.js”) for control. The user’s mobile device acts as the
controller, sending commands and gestures that are trans-
lated into JavaScript macros for efficient processing and
interactions with web applications. Meanwhile, a remote
webpage is displayed at the smart television that loads
another JavaScript file or files (e.g., meviajs) and that
becomes the display. In some embodiments, an identification
mechanism, such as a quick-response (QR) code, can be
used to load a controller onto a smart television. This
mechanism includes parameters like an application identifier
and other information that determines the destination server
for all users’ inputs and interactions. In one embodiment,
and to help further illustrate, a QR code is scanned to
activate a representation of an interface of a physical user
input device to be displayed on a mobile computing device
and to establish a communication channel between the
mobile computing device and smart television, enabling user
interaction with content displayed on the television via input
from the representation of the interface of the physical user
input device displayed on the mobile computing device.

The embodiments disclosed herein allows users to use
mobile computing devices as input user devices and stream
content to smart televisions. By leveraging video encoding
and JavaScript, embodiments disclosed herein provide a
dynamic and adaptable user experience. The decentralized
nature of the platform means that it can be applied to a wide
range of applications and computing devices. Any capabili-
ties of a web application tailored for a smart phone, tablet,
laptop, AR (Augmented Reality), Virtual Reality, Extended
Reality display, or desktop interfaces can now extend to use
with a smart television. In this platform, the mobile com-
puting device serves as the physical user input device, while
the smart television transforms into the display and the
device connect platform operates as the central platform
handling messaging between the mobile computing device
and the smart television. In this disclosure, user input device
and controller are used interchangeably.

To help illustrate this, FIG. 1 will now be described. In
particular, FIG. 1 is a block diagram of an exemplary
embodiment of a cloud services network 102 that hosts
device connect platform 100 and several applications that
are accessible to device connect platform 100. A cloud



US 12,346,399 B2

9

services network as used herein refers to the underlying
technology that facilitates the access, storage, and manage-
ment of data, applications, and resources hosted in the cloud.
An application as referred to herein may be of any type of
web accessible application/service, such as a database appli-
cation, a social networking application, a messaging appli-
cation, a financial services application, a news application,
a search application, a web-accessible productivity applica-
tion, a cloud storage and/file hosting application, or the like.

As shown in FIG. 1, the applications include a (Non-
fungible token) NFT Lab 110, a Doorbell 120 (e.g.,
RING®), Games 130, Video Conference 140 (e.g., Zoom™,
Microsoft Teams®, Slack®), and a Streaming Application
150 (e.g., Netflix®). Although cloud services network 102
of FIG. 1 is shown to host only these applications, it is to be
understood that the techniques described herein may apply
to cloud services networks that host other applications, such
as email services (e,g., Google®, Outlook®), productivity
suites (e.g., Google Workspace™ Microsoft 365™), social
media platforms (e.g., Facebook®, Twitter®, LinkedIn®),
cloud storage and file sharing (e.g., Dropbox®, One-
Drive®), and online shopping (e.g., Amazon, eBay®).

Device connect platform 100 may include one or more
server devices and/or other computing devices. Any of the
applications may be associated with resources that are stored
on one or more application servers. Each component of
cloud services network 102 may be communicatively con-
nected via one or more networks (not pictured in FIG. 1).
These one or more networks may include, for example, a
local area network (LAN), a wide area network (WAN), a
personal area network (PAN), and/or a combination of
communication networks, such as the Internet.

Further, as depicted in FIG. 1, device connect platform
100 uses a component, web integration code 170 (also
referred to as mevia.js herein when referenced as a
JavaScript file or files in some embodiments), which is part
of device connect platform application 160 (also referred to
as Mevia App herein in some embodiments), and web
integration code 170 is configured to integrate various web
technologies like JavaScript, CSS, and HTML from an
original web application. In some embodiments, with the
implementation of mevia.js, this may be achieved in frame-
works such as React by creating a component <MEVIA/>
180. In some embodiments, device connect platform 100
may operate on different ports, including secure SSL. mode
for HTTPS, depending on how web servers are set up.
Device connect platform 100 is adaptable to different web
server configurations. Device connect platform 100 may
work with servers like NGINX or Apache and even in hybrid
setups with NodeJS 175, supporting both HTTP and HTTPS.
Web integration code 170 may act as a connecting piece,
essentially linking various elements of device connect plat-
form 100 communication and data flow between different
parts of the system, serving as a “glue” that holds compo-
nents of device connect platform 100 together. Applications
can be hosted on their own server, whether they are within
the same network or spread across different networks. This
provides flexibility in resource allocation and deployment.
Device connect platform 100 may employ technologies, like
SocketlO for WebSockets and WebRTC for peer-to-peer
communication. These technologies enable real-time instant
communication between controllers and the web applica-
tions that are being controlled.

For example, in some embodiments, an application may
use two or more ports, for example, to operate in SSL. mode
for HTTPS and another port (e.g. 3000). This depends on the
configuration of a web server (e.g NGINX or Apache), a

40

45

50

10

hybrid configuration running NodeJS 175 and a webserver
supporting HTTP/HTTPS server 165 can also be used to
support servicing a device connect platform 100 application
as well as servicing controller applications. As described, in
some embodiments, web integration code 170 (e.g., mevi-
ajs) functions as the glue code to device connect platform
100 to “join” virtual environments, where messages carrying
events and other messages from a controller or set of
controllers. Additionally, in some embodiments, each appli-
cation could reside on its own server (e.g., as depicted in
FIG. 1, nftmevia.art, iotexpert.com, meviagames.com,
zoom.mevia.tv, and mevia.tv). Also, all applications could
be collocated in the same network or in different networks.
Additionally, web integration code 170 (e.g., mevia.js) may
also include the use of SocketlO for web sockets (WS or
Web Socket Secured as WSS) and WebRTC when a peer-
to-peer communication is established between the controller
and the web application being controlled.

Further, in some embodiments, device connect platform
100 is configured to convert any mobile terminal that uses a
web browser to a remote device that can control a smart
television using a browser application. In general, web
assets are used for displaying widgets when a web-based
terminal is in used, but could also be captured from a
web-based headless rendering engine, such as Puppeteer
(https://github.com/puppeteer/puppeteer). For example, all
manipulations and commands that are generated by the
device connect platform application can also be broadcasted
to a cable television or satellite operator.

Device Connect Platform Controllers

As described, device connect platform 100 is configured
to work with several types of user input user devices, where
each input user device functionality depends on the web
application that the input user device is meant to control. In
some embodiments, a representation of an interface of a
physical user input device is displayed by the first browser
after scanning a QR Code displayed on a smart television or
printed under a smart television. For example, in FIG. 1, QR
code 185 or other identification mechanism may be used to
identify a user input device to be displayed on mobile
computing device. For example, the QR code may identify
a remote control associated with a smart television. In some
embodiments, the QR Code includes parameters such as an
application identifier (e.g., Application Identifier (AppID) or
Universal Unique Identifier (UUID), etc.) and other infor-
mation that determines the destination server of any touch
gesture data, such as keypresses, touch moves, gestures
including accelerometer data that is captured at the mobile
computing device.

FIG. 2 provides exemplary embodiments of representa-
tions of interfaces of physical user input devices being
displayed by a browser executing on a computing device.
For example, a palette controller 200 and a game controller
210, are displayed on computing device 230. Computing
device 230 may be any type of stationary or mobile com-
puting device, including a mobile computer or mobile com-
puting device (e.g., a smart phone, a laptop computer, a
notebook computer, a tablet computer such as an Apple
iPad™, a netbook, etc.), a wearable computing device (e.g.,
a smart watch, a head-mounted device including smart
glasses such as Google® Glass™, etc.), or a stationary
computing device such as a desktop computer or PC (per-
sonal computer).

As shown in FIG. 2, palette controller 200 contains a grid
207 to map the display, as well as other commands shown
in 202 that may be associated with JavaScript source code
and libraries. For example, palette controller 200 may emit



US 12,346,399 B2

11

touch start, touch end, touch move, as a user touches grid
207 with a pen stylus or a finger. To help illustrate, x=100,
y=200, touch start can be generated, and sent in a message
to a drawing web application. In some embodiments, this is
being tracked by gestures.js 220 which is the script that
detects all gestures. At the same time, the receiving appli-
cation will process those events locally and complete pro-

12

touchend, x and y coordinates, as well as using k-nearest
neighbor (KNN), a neural network, or other machine learn-
ing techniques.

Assuming that touchEndX and TouchStartX are created
and a function “AbouttheSame” indicates that two touchev-
ents are very close to each other, the following JavaScript
code will generate a Swipe Left and a Swipe Right event:

if (touchendX <= touchstartX && abouttheSame(touchstarty, touchendY, 80) ) {
console.log(‘Swiped left’);
sendCommand(“Swiped left”, x, y);

} else

if (touchendX >= touchstartX && abouttheSame(touchstart¥, touchendY, 80) )

console.log(‘Swiped right”);
sendCommand(“Swiped Right”, x, y);

)

cessing, for instance, as x=200, y=400, touch end event has 20

been detected in grid 207 or has touched the area on palette
205. Additionally, in some embodiments, a controller can
also associate JavaScript elements to be sent as a message,
for example a jQuery command such as “$(‘#button”).click(
)” where the button is a remote HTML tag associated with
HTML such as <button id="button” . . . . /> in the web
application that is being controlled.

The controller may issue the messages and events that are
passed to the device connect platform, where a content
router will then process all events and messages and direct
them to the proper application that has included mevia.js as
part of its libraries. The events generated by the represen-
tation of the controller are directed to the web app that is
displayed on the television.

To help further illustrate, as depicted in FIG. 2, when a
user types the link or loads Uniform Resource Locator
(URL) 208, https://app.mevia.television/paintbursh/, associ-
ated with palette controller 200, palette controller 200 is
displayed on a web browser executing on computing device
230. In some embodiments, a input user device may be
associated with a particular application and all events,
keyboard messages, hand gestures, accelerometer readings,
are passed or emitted to a WebSocket command that encom-
pass the following JavaScript Object Notation (JSON)
object, for example:

Message = { evt: Type of event (e.g. “touch start”, X: position X,
Y: position Y}

As these events are captured by the gestures.js library,
which is located and loaded as part of the HTML of the
controller, many other events can also be triggered, such as
swipe right, swipe left, swipe up, and swipe down at the
local level at the mobile device. These basic touch events
(e.g. touchstart, touchmove, touchend) are processed and
used to generate a  messagecomand or a
message.evt="Command.” In this case, a JSON message
will contain the following structure:

Message = { evt: Command,
Command: “Swipe Right”}

A swipe right event can be detected using multiple
methods including arithmetic comparison of touchstart and

25

30

35

40

45

50

55

60

65

In a different scenario, a gesture could signify “Tap” or
“Double Tap” and represent “Enter” or selection as a stan-
dard application. The interpretation of such commands is
then fetched in a database of device connect platform 100,
where a certain Application Identifier (AppID) will have a
different behavior than others. For example, a “Long Tap”
could be mapped to a jQuery command or a standard HTML
command such as document.QuerySelector, where $(“#sli-
der”).goto(1), or send a slider JavaScript widget to the first
slide. Similarly, in a game scenario, a keyboard’s up, down,
left and right are mapped to icons or positions shown as part
of URL 216, https://app.mevia.television/gamecontroller.
When game controller is downloaded, the keypad 218 may
contain standard game functions as well as “macro” com-
mands 215 that are associated with one or several JavaScript
messages that are being executed remotely at the web
application in control. For example, for Doorbell 120, a
“Long Tap” (e.g. pressing the screen for four seconds) may
mean close the door, whereas a short tap may mean open the
door. The specific functionality is identified and can be
changed in real-time as users are pressing and interacting
with the controller, depending on how the behavior is
established by those controllers. In some embodiments,
gestures.js 225 is tracking any gestures detected.

FIG. 3 provides other exemplary embodiments of repre-
sentations of interfaces of physical user input devices being
displayed by a browser. For example, FIG. 3 depicts a
microphone and camera controller 310 including micro-
phone 315 and cameras 320 and 325, which are available in
HTMLS5 in more recent browsers. These controllers when
used could be combined with a WebRTC message and draw
on a remove <canvas> HTML object or be used for trans-
mission of voice in a voice chat application, for example,
when using a video conferencing client application:

Message= { evt: Audio or Audio + Video or Video
Payload: base64 image or webRTC socket to a canvas}

A remote website that expects a user to open a web
browser and authorize the use of a WebRTC camera or audio
should be able to stream to device connect platform 100 the
contents of the real-time video and audio processing or
process a sequence of screenshots captured from the camera
or audio snippets. FIG. 3 also depicts a keyboard controller
300 and messages sent from a keyboard tap at 305 which
may be interpreted as:



US 12,346,399 B2

13

Message = {evt: KeyBoard,
Value: “SpaceBar” }

Therefore, the embodiments disclosed herein show how to
process events, multimedia, and macros that are captured
from a controller and how those macros are handled by a
receiving application.

FIG. 4 depicts device connect platform 100 processing of
a user interaction with a representation of a user input device
displayed on a computing device. More specifically, FIG. 4
depicts how a user handles a controller, in this example, a
keypad 402. For example, the user touches keypad 402 at
number 7, and the smart television will be updated to display
the number 7. In order to achieve that, the controller, which
is displayed on smart phone 400, is located at the URL 404
https:/:app.mevia.television/keypad. The keypad web-app
includes multiple HTML/CSS objects with images including
mevia.js and gestures.js. In FIG. 4, the remote web appli-
cation is located at URL 432: https://callApp.mevia.televi-
sion/call. Both URL 404 and URL 432 are loaded asynchro-
nously and do not need to be synchronized. However, in
some embodiments, URL 432 may have been loaded first
before URL 404 and is, for this example, ready to be used.
As such, the target application may contain the HTML tags,
“<input type=text id="callto”/>", which will be used to
receive the keypad’s input 434. Hence, the value in 434 is
initially “ ” or empty. As the mobile device loads the
controller via HTTP or HTTPS, the URL keypad at https://
app.mevia.television/ 406 loads the gesturesjs library,
HTML, and images, as well as other JavaScript libraries
information. The controller’s URL also includes an appli-
cation identifier (AppID) and UUIDs that are generated from
device connect platform 100 to associate a user’s events to
the application, and those values are embedded in the
response 408. The UUID value is unique and is used to
represent a session key. The “AppID” or Application Iden-
tifier could also change and be used as “nonce” parameter
but it is not necessary for this particular example.

The message.evt and message payload is created after
pressing the key “7”. A SocketlO session 410 is used to send
the JSON message structure 412 that includes the following
members: message.evt, message.value, message.x, mes-
sage.y, message.z, and message.time (or timestamp), which
provides position of the keypress event and its value. The
message payload can be expanded to include other param-
eters. The keypad module can be rendered as part of a nodejs
web application that listens to port 3000 and HTTPS port at
443, as shown at 414. Consequently, in FIG. 4, the KeyPad
controller 416 will use the session and the SocketlO request
418 but instead of being message.evt=touchStart at t=0, and
touchEnd a t=200 ms, the message is replaced by device
connect platform 100 to a JavaScript command that is
embedded as part of the payload, in the SocketlO Request to
the web application with a “JavaScript libarry”. The web
application at step 420 receives message.evt=KeyPress,
value=7 which is then processed by the CallApp.Mevia.tele-
vision using SocketlO or Websockets (WS or WSS, for
secured web sockets).

In FIG. 4, at the web application, the websocket is
controlled by the mevia.js 422 and any CSS resources 424
are used to display and modify the HTML “<input
type=text” id="callto>" field. By default the browser will
send to the input screen with label “Key pressed remotely
was:” and the value 7. The keypress is then transformed to
a JavaScript “new keyboardEvent( )” with the “keydown”

20

25

40

45

60

14

message, message.evt.keyValue. In this sequence of events,
keypad 402 has effectively written over the remote screen a
value of “7.” The intervention of the “Content Router” entity
is omitted for simplicity, and a simple socket.broadcast.too
from SocketlO is used to show as an example how the value
of “7” is transmitted from the phone to the application. In
fact, other applications retrieving the same webpage, and
hence all displays, smart televisions, tablets, or other brows-
ers connected to the same page will see updates received by
pressing a keypad from the mobile phone. Observe that
updates on 434 occur asynchronously without a new GET
request issued by the web browser at 432 but instead by a
socket.on(“command”, . . . ) that triggered the keyBoard-
Event that in turn simply updated the input screen had a
standard keyboard connected over USB and as defined by
the standard HTML page 426.

Additionally, the device connect platform server’s macro
converters 428 may require converting all references to local
or remote assets (e.g. hypertext reference attribute (href) tag
in HTML) in device connect platform application 100 to be
converted from local to fully qualified domain name
(FQDN) address. Even HTML. tags related to “image src” or
“<img src="> html tag, and the path of the resource must be
converted to facilitate the conversion of a standard web
application to a device connect platform application. For
example, an asset loading from the standard HTML a URL
without a FQND <image src="myimage.png”/> may be
converted into <image src="https://callApp.mevia.televi-
sion/call/images/myimage.png”/>. This conversion permits
the use in cloud-based systems and access to CDN’s that
facilitate NodeJS processing. Additionally, cross-origin
resource sharing (CORS) or cross origin sources must be
configured to facilitate loading resources from other Uni-
form Resource Identifier (URI) or URL other than the
original FQDN even with the same FQDN but executing
from a different port. The element 430 in FIG. 4 shows how
using SocketlO a keyboard is delivered to the Mevia appli-
cation by dispatching a KeyBoardEvent to the main Docu-
ment Object Model (DOM) element document. Similarly,
the controller can be initialized depending on what applica-
tion is being used, for instance switching from a keyboard to
touch interface. An “initController” message triggers a
mobile terminal to initialize and load a new or different
controller or simply the current controller is reinitialized
440. During this initialization process, authentication keys
can be re-issued and payment information can be collected
to the user. In one embodiment, a payment request can be
made from a service such as an online payment system or
collect token information using the end-user’s software
cryptocurrency wallet account such that the use of the device
as a controller is not free.

The exemplary methods for enabling a server-based inter-
face to serve a smart television by the device connect
platform architecture, are shown in FIG. 5 and FIG. 6. More
specifically, FIG. 5 depicts how mevia.js loads and how it is
used to display a smart television, while FIG. 6 shows the
controller interface that is loaded by a user to a mobile phone
to control a smart television. First, at step 500 in FIG. 5,
initialize for web communication with security credentials
like a key, certificate, and certificate authority occurs. For
example, Secured Socket Layer (SSL) is used where a
private key, certificate, and a certificate authority files are
loaded as part of NodelS session for WebSocket Secured
(WSS) transactions. This process starts WebSockets at a
certain port (e.g. Port 3000) secured, and enables the use of
HTTPS-based resources (e.g. load images, CSS, etc). At
next step 505, the URL for the original application, which



US 12,346,399 B2

15

will be used to interact with the application is set and all
resources for the application from the URL (including
HTML, CSS, images, and JavaScript) are retrieved. To help
illustrate, a JavaScript game can be loaded from the original
link, and then as part of the same procedure all other assets
are loaded into the DOM for a particular HTML page. Once
the DOM tree is initialized, the web application for the game
is modified to add mevia.js, mevia.css, and other elements
that can be added dynamically by using dom.append(..) or
dom.appendChild(..). At step 510, the ‘href’ attributes
within the DOM of the application are modified, including
redirecting links or adjusting resource paths. At this step, the
DOM can add the mevia.js file, mevia.css, and modify all
“href” values required for the application to work. For
example, if the game makes references to images, fonts, and
other resources in the original HTML are pointing to a local
reference, they can be modified to a server plus path
references. At step 502, another path to initialize an appli-
cation is performed. For example, step 502 involves an
initial state waiting for an application launch command with
a specific application ID. To help further illustrate, an
application via the “LaunchApp” command using the AppID
or application identifier that could be associated with a menu
to launch another application. At step 515, the application
1D, such as a UUID, and some form of authentication, such
as token or key are set. For example, once the device connect
platform application’s HTML has been updated, a device
connect platform object is set to ApplD, UUID, and any
potential authentication requirement (e.g. biometrics, user
and password authentication, certificate-based authentica-
tion e.g. 802.1X, PKI, and other Private/Publick Key
authentication).

At step 522, a command is sent to initialize a controller.
For example, an “InitController Command” may in fact be
issued by the device connect platform infrastructure and sent
to a particular controller. The initController command may
load new authentication requirements that are being imposed
as part of the process to load a particular controller. For
example, a controller may be “disabled” until authentication
is completed. This authentication can be added to the DOM
as part of a controller as mevia.js modifies the DOM to
evaluate JavaScript macros. The authentication may require
a particular user at a controller level to enter username and
password. In some embodiments, a controller may request a
payment portal and other payment portals include web
widgets, like “Pay now” button, for controllers that require
a method of payment or when a subscription to a particular
service is past due.

Following authentication, at step 520, the controller is set
with specific parameters. For example, the parameters may
include ‘KeyPad’ and ‘Video’ which are types of input for
the application. In some instances, a keypad 12-key pad (0,
1, 2,3 ...# *) or a Character keypad. To help further
illustrate, the device connect platform application or web
interface will proceed to load assets including HTML,
JavaScript, CSS and images for the application being dis-
played into a smart television or any display in general. The
application is associated with a controller, and there are
several standard controllers that can be implemented using
HTML. The device that will control the smart television
could be a touch interface that can then be controlled with
a mobile phone for a keypad, a keyboard, a gesture-drive
interface, and other types of one or several controllers that
will be loaded by a user attempting to interact with the
device connect platform application. Once a controller is
defined, it is set to be initialized, which could have been

10

15

20

25

30

35

40

45

50

55

60

65

16

completed via the “initController” command that is being
sent to the controller at step 522.

Additionally, at step 525, a Quick Response (QR) Code
string may be re-generated using ApplD, UUID, and region
or any other session value and stores as part of “qrcodeStr”
value. This “grCode” value can also be a “fingerprint” for
the stream being displayed that can be used later for match-
ing this fingerprint with a visual way to retrieve the same
fingerprint and do a match.

At step 530, the quick response code (QR Code) is set to
the quick response code string. For example, the QR code
may also be maintained constant for large periods of time,
and at the device connect platform infrastructure, simply
when a HTTP GET/POST request is made with the contents
of the QR code will be remapped accordingly to any other
application, service, or interface that has been directed to.
However, for public places a QR Code might be dynamic
and regenerated after a timeout has been detected. It is
known that a web interface can simply show a QR code as
an image in PNG, JPEG, or even as a PDF format and that
can be printed by the end-user that is owning a smart
television, or dynamically change it to be displayed and
shown at the smart television screen.

This QR Code has a link that can have embedded session
identifiers (Session IDs), location identifiers (LLocation IDs),
and other parameters that are associated with a particular
controller associated with the device connect platform appli-
cation screen being displayed at that location. At step 535,
the DOM is appended from a URL to the current DOM. For
example, once step 530 is completed, the output to the DOM
of the device connect platform application is updated at step
535. At step 540, a response is generated using the DOM of
the URL. For example, once a response is requested such
DOM is sent as a reply to an HTTP GET request at step 540.
A smart television can be provisioned via a web-page
loaded, with the meviajs library and/or gestures.js, that
points to the device connect platform’s web application
interface, or can be part of a native application for a smart
TV (e.g., Android television, Google TV, L.G’s Operating
System (LG WebOS), Apple television, Samsung’s Tinzen
platform) or simply by loading the webpage in the televi-
sion’s web browser.

FIG. 6 demonstrates how initController and a new con-
troller is loaded into a mobile device or any client computer
that can load HTML web pages. At step 600, an HTTP server
is initialized with specified security credentials (e.g. key,
certificate, and certificate authority). For example, the con-
troller requires the initialization of the server including
certificates, private keys, and certificate authority bundled
are loaded. At step 610, the application is loaded (e.g. with
the provided ApplID, UUID, and authentication details, e.g.
authentication context). For example, the device connect
platform context is loaded as part of device connect platform
application and the LoadApp API that includes a UUID that
can be generated as part of the initialization process, ApplD
that maps applications to resources, and any authentication
object that needs to be validated or has been validated by a
controller accessing a Mevia application. At step 630, the
controller’s DOM or Document Object Model is retrieved
from the device connect platform application. For example,
the controller’s dom object is initialized with HTML, CSS,
images, and other JavaScript including loading the ges-
tures.js, gestures.css, and other files required to load the
controller. The libraries that handle events, such as touch-
start, touchstop, touchend, keydown, enter, swipe left, and
swipe right are part of the gestures.js file. All of this process
is part of step 640, the meviaverse object generates a



US 12,346,399 B2

17

response in HTML, JavaScript, CSS, and other resources
based on the controller’s DOM. In this example, the con-
troller loads gestures.js, gestures.css, and other related con-
trollers, for example a 12-digit keypad Controller, a Joy-
stick, or a Camera. As a result, then a user loads the
controller as part of an HTTP response that was generated in
the previous step 650 and loaded at the client’s device DOM
at step 650 which was generated by HI'TP GET or POST
request that was issued to retrieve such controller (e.g.,
HTTP GET/init/controller?keypad=12-digits. In other
words, what gesture.js does is to create SocketlO commands
and receive all types of events that are sent to the Mevia
application target displayed at a particular smart television.
The device connect platform can create logins, screens, and
interfaces for payments, door control, videoconferencing, or
bundles of applications that are displayed on smart televi-
sions or other displays. Also steps 600 to 650 can be
delivered to a mobile phone or tablet upon scanning a QR
code associated with a particular smart television or display,
as a response of the HTTP or HTTPS request to retrieve the
appropriate controller e.g. https://app.mevia.tv/keypad. This
page renders via the response command, all libraries, icons,
images, and structure for the particular controller. By virtue
of this controller, other controllers can also be loaded, for
example, a camera controller can be generated by embed-
ding into the QR Code https://app.mevia.tv/camera/, and the
camera send WebRTC video to a server where the video will
be recognized using Computer Vision tools or deep learning
(e.g. LSTM Networks) to load another controlled based on
the camera video input.

At step 655, if the authentication check is successful, then
the credentials are validated. For example, the controller is
displayed provided that authentication is known or a user
has paid for accessing a controller, e.g. video game arcade.

At step 645, events from the DOM are used to update the
DOM on the controller to reflect user interactions. For
example, once authentication has been completed and a user
simply operates and interacts with the controller and
receives DOM events, and updates the DOM accordingly. To
help further illustrate, switching a palette from red to
magenta, will require a DOM operation to change color from
“red” to “magenta” in the CSS style dynamically. At step
625, the device connect platform is in a wait state until the
controller initialization process begins. For example, the
gestures.js library expects as a command, at least “InitCon-
troller” that enables a new controller depending on the
experience. In some embodiments, a user may “Tap” or
“Double Tap” on an application icon (e.g. a menu or slider,
and launch a game) by creating an event and sending a
message.command="Taunch,” message.appid=ApplD or
message.uuid=UUID that is related to the particular icon
selected on the screen. A message.command “Launch” or
“Start” may do two things, for example at step 502 in FIG.
5 is waiting for commands from the application, and load
into the instructions (e.g. mevia.js) a new page using a web
redirect to anew “URL” or modify the DOM, by replacing
document.body html DOM structure and reload in HTML
the object called document.body and other HTML elements
including document.head, and other parameters with the
HTML from the other web application being loaded.

In some embodiments, some applications may require
authentication and, in that case, at step 620, the initCon-
troller command is waited by the controller via gesture.js.
For example, a QR code is generated with a specified
timeout value for an authentication process. As part of FIG.
6, 2a QR Code can be displayed on screen for a few minutes
at step 620 or at step 622 the generated QR code can be

10

15

20

25

30

35

40

45

50

55

60

65

18
printed or displayed as part of a <DIV> or DIV HTML Tag
that overlays over the Mevia application that is being
displayed on the smart television or display under control at
step 624. In some embodiments, at step 660, a payment may
be validated if a payment is needed.

Authentication is optional to load or not any controllers
using FIG. 6 at step 660, where ta payment validation may
be required to load a particular controller. An scenario where
this is useful will be at a parking garage, where the controller
to open/close the gate will not be loaded to the user unless
a payment has been made upon entering previously with a
keypad controller, a vehicle’s tag number. Indeed, the sys-
tem allows a user to at a parking garage to control an LCD
screen via loading a 13-digit keypad controller in their
phone, and then converting the phone into a NFC reader
(e.g. Apple Pay) to submit a payment associated with the
TAG entered.

Controllers in the Device Connect Platform

As shown in FIGS. 7(a)-7(c), there are three types of
communications with SocketlO, a) using standard web
sockets in FIG. 7(a) where controller 705 communicates
with the device connect platform infrastructure 700 and
sends commands and displays to the Internet of things (IoT)
devices 720 and to smart televisions 715 or other displays
that could include other tablets, LCD screens, and devices at
710. At FIG. 7(b), WebRTC can be used instead to establish
a peer-to-peer communication between the controller 730
and the display 735 while the device connect platform is not
in charge of routing packets from the controller device to the
target display. FIG. 7(c¢) shows how a controller uses
WebRTC but device connect platform 740 creates IP (Inter-
net Protocol) Tunnels 750 between the controller and a
display, where the controller 745 sends messages and events
to those displays 755 using WebRTC over tunnels. These
tunnels could also be GRE, GTP, IP in IP or other VPN
tunnels that encapsulate IP traffic from one server to the
next. WebRTC is a technology that allows Web browsers to
stream audio or video media, as well as to exchange random
data between browsers, mobile platforms, and IoT devices
without requiring an intermediary. In some embodiments,
the tunnel server is done via STUN/TURN servers on the
internet (for example stun.eglacorp.com) and by setting
those as part of the WebRTC service if needed.

FIGS. 8(a)-8(c) show a use case on how a device connect
platform application is launched by a user. First, at FIG.
8(a), a user 800 has scanned a QR Code 815 underneath a
smart televisions 805. In FIG. 8(a), a slider 810 depicts
several applications called Mevia App 1, Mevia App2,
Mevia App3 and others. At FIG. 8(a) the user may proceed
to execute “Swipe Right” 812 and a game application 814 is
highlighted in FIG. 8(5). The only communication channel
between the phone and the smart television is the Internet.
As such, a user may proceed to “Tap” over the button
associated with game application 814 that is also highlighted
on the smart television as shown in FIG. 8(¢). In some
embodiments, the game web application may be written in
JavaScript and run on a browser and has been modified to
include mevia.js.

As a consequence, the initController command is issued
to switch from a touch screen to a game controller 825 and
allow a user to play the game application 814. To exit game
web application, a user may press any part of the screen with
“long tap” that is mapped to “Exit” and be returned to the
previous menu application. As such, a new initController
command and LaunchApp are issued and the previously
used slider that was initialized was loaded as FIG. 8(c). At
all times, any user can still send standard commands using



US 12,346,399 B2

19

smart television’s remote control 830. In some embodi-
ments, optimizations may be implemented for example
using Redis or other caching modes, as well as handling
optimized ways to load/unload applications. Redis can be
used as a message broker to distribute and exchange events
and messages from all controllers to displays, saving
images, caching JavaScript files, and add caching to the
device connection platform.

FIGS. 9(a) and 9(b) shows another sample of a device
connect platform application, a drawing program. A user can
swipe right or left and find the NFT Lab application 905 on
the screen. Upon selecting or generating a “Tap” 900, the
DOM objects are updated at the smart television display and
an “initController” command is delivered to the mobile
terminal where a “palette” controller 915 is then loaded into
the mobile device or tablet. Once a palette controller 915 has
executed (e.g., window.onload( ) method), touch events are
converted to messages, such as message.evt is touchstart at
certain (X, y, Z) coordinates, touchmove, message.evt is
touchend to a certain x, y, z position 930. For some cases, z
might be equal to zero, as most user interfaces are 2D, while

10

15

20

20

value. In some embodiments, the controller could be a game
controller 1110. Controllers may also include haptic feed-
back which could be part of the InitController command
message, by adding an asynchronous message HapticCon-
troller command that can then be delivered to the control to
simulate vibrations or haptic feedback on the mobile phone
or tablet. As a result, game messages are generated and sent
to the application being controlled 1106, for example Up
key, Down key, and respective timestamps. Game develop-
ers can also assign sequence of keys to movements or
macros within a game that are generated by the device
connect platform server’s macro converters 428 in FIG. 4. In
some other embodiments, an Augmented Reality Headset
(AR) device will be used to handle head gestures and its own
controllers to create virtual overlays of those controllers that
will appear in the field of view of the AR headset.

For example, a developer may implement a function
called “abouttheSame( )” that returns TRUE as a user has
tapped approximately close to the position of between a
touchStartX and touchEndX as well as touchStartX and
touchStartY such that:

function abouttheSame(a,b, thres=20)
If Math.abs(a—b)<=thres then true else false;

if (abouttheSame(touchstartX, touchendX, 25) && abouttheSame(touchstarty,
touchendY, 25)) {
if count_number_of taps=1 within a delta_time of 500ms then Tap;
if count__number_of taps=2 within a delta_ time of 250ms then
DoubleTap;
if count__number_of taps=1 within a delta_ time of 3000ms then

LongTap;

if (mouse__move) reset_all_timers( )

for those where 3D user interfaces are created the z-axis will
not be zero. As shown in FIG. 9(5), the user’s interaction 925
with palette controller 915 is displayed on smart television
920. In some embodiments, QR code 910 may be used to
prompt the loading of palette controller 915 on a mobile
device.

Each smart television, display, or sensor is associated with
a QR code that is used to load the controller. As shown in
FIG. 10, a database with a list of QR Codes 1001 are stored
in a database and application identifiers 1005 and applica-
tion names, and UUIDs or sequence of UUIDs 1010 are
mapped to each application name in use. A loaded applica-
tion may not require certain types of authentication 1015,
such authentication may include using biometrics through
the mobile video controller using WebRTC or using API’s
navigator.mediaDevices.getUserMedia which can be used
for biometric authentication. Each QR code may also be
associated to an application URL (which is served by a
webserver either using HITP or HTTPS protocols) or a
device connect platform interface 1020 that may include
mevia.js, mevia.css, and other resources to communicate
events to the applications loaded via the QR code.

As indicated, there are several types of controllers that can
be loaded individually or as part of a bundle of three or more
controllers. FIG. 11 shows the types of controllers that the
device connect platform supports. A touch controller 1100
provides touch events as well as simulated mouse events to
the device connect platform applications. The touch events
are known and defined by HTMLS5 specifications; hence this
controller can emit timestamp, touchstart, touchend,
touchmove 1102 or a combined set of events can turn into a
command as “Swipe Right” 1104, together with a timing

35

40

45

50

55

60

65

The exemplary pseudo-code indicates that a Tap, Double-
Tap, and LongTap can be detected by tracing the events and
position of the finger on screen. The thresholds can change
depending on the application and in some cases game
developers will know that those events can be detected using
digital signal processing filter or with training using machine
learning models as presented in FIG. 11.

Other controllers that can be used with the device connect
platform and include a camera or capture device 1120. For
example, once a picture has been taken a base64 image/png
or image/jpg 1122 is then submitted as part of the messaging
system to the device connect platform. Some other messages
may include bar code information. If that is available locally
on a device or has been made available as part of the
controller interface by using a BarCode SDK from Dynam-
soft or could be performed directly by the web application
running meva.js.

As depicted in FIG. 11, camera 1124 and microphone
1126 can be used to capture live camera feeds, camera stills,
and audio generated from the mobile device or tablet. These
controllers can emit as messages, with sequence of images
captures via WSS or WebSockets that can include audio
buffers or image stills from the camera. In other embodi-
ments, the camera and the audio/microphone can be deliv-
ered via WebRTC 1138 that can either be natively tunneled
via an IPinlP, IPSec or any other tunnels created by the
device connect platform or use a standard STUN/TURN
server (e.g. stun.eglacorp.com). This information may be
collected by the controller via the “initController” command
or created real-time depending on how the device connect
platform application is being controlled. In the event that
video is not present, the message.evt will describe



US 12,346,399 B2

21

“StreamAudio” event and a remote WebRTC socket is
opened to interact with an audio tag at the receiver, for those
voice-only applications (e.g. walkie talkie, push to talk) for
example. In some embodiments, for multimedia, audio, and
video applications, a “videostream, audiostream” can be
composed for example using WebM encoder for video and
Opus encoder for audio, using Websockets or WebRTC
PeerConnection JavaScript API 1128.

In some embodiments, video and audio codecs could
require additional transcoding or encapsulation in other
messages, and could include emulation as a Universal Serial
Bus (USB) device for native applications or non-web appli-
cations that expect a USB identifier (USB VHCI Root Hub)
for which a USB device emulator that wraps WebSockets or
WebRTC traffic for those native applications requiring it.

Another controller that can be used with an application in
the device connect platform that is a “3D Gesture” generator
that emits the “accel” event 1140 and accel_x, accel_y,
accel_z elements. In general, a timestamp can be added to
the accel_x, accel_y, accel_z payload, and the sampling rate
for these events is set by the InitController command, but it
will depend on the device being used if time intervals are set
to zero, and time delays are required to compute gestures.
This function can be implemented in HTMLS5 browsers by
issuing the windows.DeviceMotion event that can then be
captured in a callback as follows, window.addEventListener
(“devicemotion”, updateData) where:

function updateData (&)
var acc = e.acceleration | e.accelerationIncludingGravity;
accel.push({t:delta__time, x:acc.x, y: acc.y, z: acc.z});
if len(accel) == N:
XMLHhttpRequest(accel);
accel=[ ]

The acceleration information is then captured in the
“accel” array that contains delta_time or time in millisec-
onds between samples, accel.x, accely, and accel.z are
accelerator values of x, y, z coordinates that is then for-
warded to a neural network or any machine learning inter-
faces to be compared with learning data as shown in FIG. 11.
As such, gestures like UP, DOWN, SWIPE RIGHT, SWIPE
LEFT, TAP, EXIT, and other can then be learned and
mapped to a particular user’s profile or a generic user profile
with trained information stored in the device connect plat-
form.

All those message.evt commands are sent over to device
connect platform to the content routing module (depicted in
FIG. 21) that determines what the appropriate route for the
packets is and events generated from one controller or
several controllers required for a particular application.

Other controllers could be a USB card reader 1150
emulator that can be connected to a mobile device 1154 (e.g.
stripe reader). In those cases, custom messages can be
created and sent via message.evt traffic to the content router
and translated appropriately to handle JavaScript messages
or events to be sent to a remote website. For example, Near
Field Communications (NFC) could read an NFC card and
that information sent via a message.evt value with an NFC
card payload, which could be translated as a keyboard set of
commands or classified as custom event with a particular
JSON payload that can be made available as part of the web
application interface.

In general then, the device connect platform is depicted in
FIG. 18, as a series of controllers 1805, a system where a
controller server with HTML 1810, a web HTTP server

10

15

20

25

30

35

40

45

50

55

60

65

22

1802, gestures.js, and A/ML to handle the controller learn-
ing and bundles. The Messaging queues 1830 contain all
message.evt, message.x, y, z coordinates, and all other
messages used for gesture control devices, and other bundles
or series of controllers. 1812 and 1808 represent the web app
ingest, that can also include Al and machine learning as part
of the MEVIA application or Mevia server block 1816 as
well as receive commands that can be translated from the
original messages originated from the controller to
JavaScript commands 1825 are dependent on the HTML
used by application 1812. In other words, the messages that
originate the controller are then converted to mouse events,
JavaScript events, and WebRTC/Websocket traffic depend-
ing on the configuration used and the type of application
loaded. The content routing 1845 element is responsible for
capturing all the messaging and events, “raw” from the
controller and identifying what needs to be converted to and
managing other router functions for WebRTC and Web-
Socket video and audio traffic that is then mapped to IP
tunnels and managed by a STUN/TURN server 1820.

FIG. 19 shows the system managing two or more device
connect platform applications. FIG. 19 includes a controller
server 1900 for a game controller and its associated Meviapp
server 1902. This URL is retrieved by the screens 1904 and
contains the Mevia application and is then controlled from
controller server 1900. As shown, message.evt or raw events
are sent to the controller, while the controller can receive an
initController command 1910. The heart of the system is
depicted at routing component 1940, where all the routing
QR codes, Application Identifiers, UUIDs, databases, and
routing parameters are configured. As a result of the pro-
cessing in routing component 1940, events are converted to
commands or WebRTC/Websocket streams that are then
retrieved or pushed via HMTL and JavaScript, CSS, and
other media files 1906 and message.commands 1915 to the
Mevia App server 1902 and retrieved by clients at screens
1904. Clearly, many of these message.evt are translated to
message.commands 1915, and handled appropriately by the
Mevia App server architecture. Multiple controllers can then
be used and combined a game controller 1912 and a camera
1920.
Real-Time, Streaming, and Videoconferencing Applications
in the Device Connect Platform

For applications requiring the use of a video and micro-
phone controller, navigator.mediaDevices.getUserMedia(..)
may be required for authorized access in FIG. 12(a) and
FIG. 12(b). Once device authorization is permitted by the
user, the controller then provides gesture.js with access to a
WebSocket 1222 or WebRTC streams 1224. The same
routing path that is followed by message.evt events, ren-
dered by the page that includes gestures.js and associated
JavaScript to establish a WebRTC session or deliver via
WebSockets, images, audio buffers, or data. One objective
with FIG. 12(a) is the creation of an emulated USB interface
to a web application that loads the video and audio via an
emulated web client interface. In this embodiment, the
Mevia App RTC Server 1218 connects via the emulated web
client interface. The “Emulated Web Client to MEVIA APP”
module 1216 can then perceive commands from a controller
1225 (e.g. message.evt) as USB HID interfaces, CAMO,
CAM1, CAM2 1212 or a USB WebCam Emulator 1208 that
is presented to the emulated web client as a CAM EMU
driver. The USB WebCam Emulator 1208 encapsulates a
USB WebCam descriptor (e.g. bDeviceClass, bDeviceSub-
Class, and specialty interface association as bFuncitonClass
14 for Video). The data or payload of the connection created



US 12,346,399 B2

23
by the USB Driver is then WebSocket or WebRTC traffic
generated from the controller 1225.

Some other web applications may use mevia-webrtc.js
interface 1230 as well as mevia.js 1228, as those web
applications have implemented WebRTC natively. In those 5
cases Mevia-WebRTC will write directly to an audio tag or
video HTML tag that is part of the application. In other
words, in this embodiment, a Mevia App does not need to be
modified at all and simply an emulated web client connects
to a Mevia App server that contains the application, which
could be local to the device connect platform or could also
be remote and hosted at a different domain. The emulated
web client web application then becomes the client and
Mevia app server is what is displayed on the television.

In some embodiments, the Mevia App RTC server 1218
may not properly display contents to a particular user, for
example when the Mevia App is not designed for smaller
screens, or any other potential drawback that may include
smart television’s Webkit browser is unable to process or
display certain aspects of the application. For those circum-
stances, a simple “User Agent” inspection from the smart
television’s HTTP request may be needed and the process in
FIG. 12(c) will be able to be used in all televisions regardless
of compatibility issues with the their web rendering engine.
As shown FIG. 12(c¢) depicts the use of a different Mevia
App server display that could include a simple html such
that:

10

15

20

25

<htm!>
<body>
<canvas id="meviaapp”></canvas>
<script>
Player = jsMpegPlayer(“wss://ipaddress:8001/meviapp”,
“canvas”: document.getElementByld(“meviaapp™);

30

</script> 35

<script type="javascript” src="jsmpeg-min.js”>

FIG. 12(c) shows that component 1280 includes
FFMPEG encoder for mpeg2video and mp2 audio, for a
Puppetter’s based of captured screens of all HTML pages
shown as a result of all messaging between Mevia App
server, mevia.js, and mevia-webrtc.js. As an example, Pup-
peteer may write all captured JPEG images and pipe them to
an FFMPEG process to encapsulate them as a MPEG frame.

40

24

Socket server 1285 and a USB or Web RTC mapper 1288
component determines the proper web server to use as a
response.redirect( . . . ) or a redirect command is issued to
the smart television display to point to the display server
1290 with that jsSMPEG or JavaScript MPEG (e.g. jsmpe-
g.org) project can draw to a canvas. Similarly, an imple-
mentation can be done with RTMP, HLS, and Low-latency
HLS for these implementations, a Web Socket server might
not be required and an HTML tag with <video
source=". .. ”> instruction will be used instead of jsSMPEG
player. The WebRTC mapper 1288 defines the location
where the Mevia App Server Display 1290.

The USB or WebRTC mapper 1288 is shown in FIG.
12(¢). This module shows how a particular source IP
Address and USBID is mapped to a destination IP Address
and a USBID that is being emulated by the USBIP Daemon.
USBIP is an existent component of Linux and Windows
machines (http://usbip.sourceforge.net). The USBIP com-
mand allows attachment of a remote USB device with
certain USB Identifier located at remote machine at “IP
Address 1,” with another USB IP daemon located at “IP
Address 2,” for the machine at “IP Address 2,” the USB
device is local, and all transport are done over an internet
link.

However, as the video traffic from WebRTC Stream 1224
or WebSocket 1222 is delivered from the controller as
real-time streams. Those streams are handled by the device
connect platform at peer points 1206. As the video and audio
traffic is received by the WebRTC Peer Connection, for
example the IP Address used by the controller server is
1.1.1.1 while the IP Address of the client is loaded at
controller 1225 is 1.1.2.122, the connection with WebRTC is
made at a local server within the device connect platform.

As such an HTML Tag with <video id="“remote”> at the
controller, <video id="local” is then remote at the device
connect platform”™>. As part of the configuration of the
WebRTC interface, a STUN server 1250 could be set or the
device connect platform could have created an IP tunnel
between the controller server and the server at peer points
1206. An expert in the art will know that a STUN/TURN
server will proceed to achieve a similar result as an IP
Tunnel. As such, at the peer points 1206, the resulting video

Capturing Stage - Video:
Capture image in JPEG or PNG from Mevia App Server HTML
Save Images at Local Directory
Write image to pipe:0
Capturing Stage - Audio
Capture audio from Mevia App Audio Channel
Redirect audio as http mp3 stream
At FFMPEG
Take pipe-in from Capturing Stage
Take audio from http3 Capturing Stage
Generate mpeg2video and audio and serve it as Web Socket or use NGINx with
rtmp or write HLS to Apache web server
Write to pipe:0
At Websocket Server - websocket IP address and port XYZ
Read from pipe:0 and write all buffers to a websocket for Mevia App
Display
Wait for WebSocket Requests.
At MEVIA App Display Page
Point jsMPEG to wss://Websocket IP Address with Port XYZ

In essence, FIG. 12(c) shows that audio and video are ¢s
encapsulated in mpeg2video frames at component 1280.
Those video and audio frames are then serviced by Web-

and audio feed from controller 1225 is then put in packets or
frames that are then delivered to the USB Web Cam Emu-
lator that is collocated at the peer points 1206.



US 12,346,399 B2

25

26

WebRTC RTCPeerConnection( )

At the end-point of the RTCPPeerConnection all packets with video and audio are

buffered

Packets are written to pipe:0

USB WebCam Emulator( )

The USBIP interface is initialized to issue an USBoverIP interface
Descriptors for a MEVIAWeb Camera are initialized

Packets from the WebRTC Peerconnection are written to the USBWebCam
Emulator

If transcoded is required, packets can be first passed to FFMPEG for transcoding

to H.264 video and AAC audio.

As the network traffic with video and audio from the USB
WebCam emulator is encapsulated in USBIP traffic with
payloads with video and audio must be properly routed to a
particular session or a Mevia App RTC server 1218. As such,
a USB Virtual Router 1200 is used and a routing table 1202
will include a destination IP address and a Source IP
Address. The USB Daemon, loads the information from the
USB virtual router 1200 and issues an “USBIP attach”
command to the IP Address where the USBID containing the
web camera emulation is located. For example, the destina-
tion IP Address can be executed as a remote docket container
“run command” or if a particular server already exists an
“SSH” command can be executed from USB Virtual Router
1200 to the USBIP daemon server 1210. For example, from
the USB virtual router 1200, “ssh -u device connect platform
Dest_IPAddress:/usr/bin/usbip-attach Source_IPAddress”

As a consequence, the USBIP daemon server 1210 must
reside within the same server as the Emulated Web Client to
MEVIA APP module 1216 emulated web client to MEVI-
AAPP, as a browser instance using a web browser will then
connect to MEVIA App Server. The MEVIA application
server indeed expects that the client may render a tag HTML
video as local and remote for other clients connecting to the
MEVIA App Server. Since the smart display is expected to
visualize the results of the Emulated Web Client to MEVIA
APP module 1216 or visualize copies of what is being
observed by the Mevia App RTC Server 1218 into client
1233 or render a video and audio stream from Mevia App
RTC Server 1218 into client 1233.

The device connect platform allows for use cases: a) in
order to visualized MEVIA APP 1216 results from connect-
ing to MeviaApp Server, the mevia-webrtc.js and meviajs
1228 is instructed to copy the DOM from the Emulated
Client to MEVIA APP 1216 into the DOM of client 1233,
including copies of all video streams at MEVIA APP 1216
to canvas objects in client 1233, or creating a WebRTC
channel with client 1233 with screenshots from MEVIA
APP 1216; or b) proceed as FIG. 12(c) where the FFMPEG
and puppeteer also executes as part of MEVIA APP 1216
and proceeds to generate the screens shots to be visualized
by the MEVIA App Server-Display 1219 instead of the
MEVIA app server 1218. The Mevia App sever simply
displays what is shown at display server 1290 or a stream to
a canvas using MPEG2video and mp2 audio or HTTP Live
Streaming (HLS). Observe that mevia.js is then loaded as
part the emulated server and not as part of the MEVIA App
Server.

In other words, mevia-rep.js 1228 receives DOM object
values from MEVIA APP 1216 or uses WebRTC or Web-
Sockets to copy DOM from MEVIA APP 1216 into what is
being displayed on client 1233 or simply streams a real-time
version of MEVIA APP 1216 via jsMPEG that is processed
by component 1280 mpeg2video and served as rendering.
The advantage of using display server 1290 rendering as

15

20

25

30

35

40

45

50

55

60

opposed to DOM object copies is that any smart television
display that support CANVAS will be able to render and
handle the results from MEVIA APP 1216. Clearly, the use
case for this embodiment is the creation of a web-based
videoconferencing tools that loads USB-cameras or USB
devices that may require a particular support from an
operating system. Therefore, WebSocket server 1216 can be
implemented as a Windows client, Linux, or headless,
depending on the video conferencing software.

The same is true for other USB-based interfaces, where
native drivers and assets are expected to be loaded by the
operating system or kernel modules.

Assume that a particular videoconference does not need
USB cameras. FIG. 12(b) shows how to create a native
solution that relies on mevia-rtc.js protocol and similarly to
what it was depicted on FIG. 12(a) but instead of emulating
USB over IP, simply captures the WebRTC traffic and
WebSocket Traffic and is directly forwarded to the video
conferencing application.

As shown WebRTC 1254 depicts authorization and access
via gesture.js of navigator.mediaDevices.getUserMedia and
the instanton of WebSocket 1222 or WebRTC 1224 objects
as part of a controller server HTML page.

A similar procedure will be used for any other USB
interfaces for example, USB-based displays, chargers, key-
boards, AR headsets, etc.

As such, an ICE Server or STUN/TURN server 1250 is
setup to handle RTC communications. Similarly, the device
connect platform can create an IP Tunnel to achieve point-
to-point links between different endpoints, for example an
SSH tunnel between a controller server to the Mevia appli-
cation server or the Emulated WebRTC proxy 1246. Observe
that a WebRTC-t0o-WebRTC Mapper to WSS entity 1240 is
shown.

This server can forward WebRTC traffic directly to the
emulated WebRTC proxy or can be captured by the WSS to
create a WebSocket interface where the video and audio
traffic is exchanged. In other words, WebRTC-to-WebRTC
Mapper to WSS entity is the peer for the WebRTC connec-
tion and as a peer then it serves the content as part of
WebSocket server at port 8000. As a recipient of the peer,
WebRTC-to-WebRTC Mapper to WSS entity 1240 can
retrieve the SDP session for each of the peers and can copy
back and forth the WebRTC traffic to other peers, or simply
buffer the WebRTC traffic to be serviced as a WebSocket
traffic 1244, for example wss://server:8000/sdp1 and wss://
server:8000/sdp0.

The contents from, the WSS stream 1252 could be a
WebSocket stream and WebRTC 1254 could be a WebRTC
stream 1254 with a peer at client 1233 were the mevia-rtc.js
is loaded. Clearly, the STUN server 1250 could be placed as
part of the WebRTC traffic from WebRTC-to-WebRTC Map-
per to WSS entity 1240 to client 1233. Another embodiment
could be Emulated WebRTC proxy 1246 that could load



US 12,346,399 B2

27

mevia-webrtc.js 1248 and the WebRTC peer could be part of
Emulated WebRTC proxy 1246. Clearly, as Emulated
WebRTC proxy 1246 loads HTML from the video confer-
encing application at Mevia App RTC server 1218 and
WebRTC-to-WebRTC Mapper to WSS entity 1240, proper
Cross Origin Resource Sharing (CORS) headers must be
implemented to be able to retrieve WebRTC traffic from
Mevia App RTC server 1218 and WebRTC-to-WebRTC
Mapper to WSS entity 1240. As depicted before, the Mevia
application server user interface can be rendered a) natively
with WebRTC and video tags 1246 or b) rendered using FI1G.
12(c) implementation with a streaming canvas and using
jsMPEG js libraries for instance.

This is a similar scenario as in FIG. 12(a), observe that
mevia-rtc.js and mevia.js are used for the emulated WebRTC
proxy 1246 to MEVIA app RTC server 1218. Let’s assume
that a WebRTC application has been built and does not
require USB cameras and only does streams, for example
streams from television channels and a user’s camera with
audio. In this scenario, remote video 1232 and local video
are presented as WebRTC visualization methods using a
“video tag”. The remote video comes from other streams
sources, while the local video is the source from controller
1225. In this scenario the Mevia application RTC server
1218 receives WebRTC traffic from the Emulated WebRTC
proxy that functions a peer to Mevia application RTC server
1218, in some embodiments and the following peers can be
established. We identify, Peer0 at the mobile phone or
controller 1225, Peerl as the WebRTC Mapper device Peer,
Peer 2 at the emulated Web RTC proxy 1246, and Peer3 at
the actual Mevia App RTC server and all other peers
attached to that WebRTC server (e.g. one to many confer-
encing).

10

15

20

25

30

28

will also receive all message.evt commands and all associ-
ated events from all the controllers that can be associated
with a particular MEVIA Application. However, expert in
the art will know that another session can be established to
Mevia App RTC server directly and see all peers as an
observer, for instance as a webinar attendee and depending
on the smart television configuration and what type of role
a user has been playing different URLs can be rendered for
those using the application.

As a Websocket stream can be also used as part of the
delivery of WebRTC video and audio, or data content. In this
particular scenario, the Mevia App RTC Server 1218 could
simply bypass the emulated RTC server and load video and
audio directly into local video the wss:// traffic from Web-
Socket traffic 1244 directly. Let’s say that video and audio
are retrieved as video frames that are rendered into a canvas
and an HTML, audio tag or directly into an HTML video tag.
Under this scenario when only WSS streams are used, the
point of view is then client 1233 not Emulated WebRTC
proxy 1246, or the contents from Mevia app RTC server
which may also include other peers that are part of the
videoconference event.

In the event that a canvas is updated at the Mevia APP
RTC server using the wss://traffic from WSS entity 1240
(e.g. wss://server:800/sdp1). Under this scenario, a pre-built
application by the device connect platform might be
required and used as a recommended practice for certain
application developers creating videoconferencing applica-
tions for the device connect platform.

Another application is showing multiple television
streams, camera streams, and other sources form other
videoconferencing servers or over-the-top servers that can
transport content over the WebRTC streams or WSS streams.

Mobile Phone to WebRTC Mapper
Peer0 - Peerl
Web RTC Mapper to Emulated Web RTC Proxy < Point of View to
Smart television
Peer 1 - Peer 2
Emulated RTC Mapper to Clients attached to Mevia App RTC Server
Peer 2 - Peer 3

Show on

An objective could have been to link Peer( controller with
Peer3 clients, such that all web clients connected to MEVIA
app RTC server can see PeerQ’s stream.

However, recording capabilities, transcoding, and the use
of FIG. 12(c) embodiment would have been disabled and
will be bypassed by this configuration, but clearly Peer0
source can be displayed as part of all HTML video tags
labeled as “remote” in all clients at remote locations that are
part of the streaming session.

Hence, the point of view for the smart television is
position right at the “emulated WebRTC proxy server 1246
to Mevia App server where the mevia-rtc.js and mevia.js are
loaded, not the Mevia App RTC Server at 1218. In this
scenario, an HTTP GET request was made to the Mevia App
RTC Server and all canvas, video and/or audio HTML tags
with different identifiers are loaded into Mevia App server.
The local video tag or the reference to controller 1225 source
is shown as a peer that is being processed by WSS entity
1240, STUN server 1250, and WSS stream 1252. All other
peers and sources including remote video 1232 can be
handled by STUN server 1250 to enable proper signaling
under NATs or firewalls. Hence, an HTTP GET request
made by the Emulated WebRTC proxy 1246 is what needs
to be displayed by the smart television. This is the URL that

45

50

55

60

65

In any of these two scenarios, FIG. 12(c) can be used to
handle rendering of either scenario by creating a sequence of
screen captures and proceeding to mix the audio from the
resulting web client as it is being perceived as mpeg2video
and mp2 audio or could be encoded using the H.264 video
codec and for audio mp3 or AAC codecs embedded in a
transport stream (TS) for HLS or Low-latency HLS (HTTP
live streaming) environments.

Integrating a Windows Machine into the Device Connect
Platform

Thus far, web applications that are rendered by a smart
television level with web-based widget has been presented.
However, the device connect platform can also be populated
with operating systems that can be controlled using the
controller systems presented in FIG. 11 and a windows VM
or server can be made part of the device connect platform.
For example, Windows applications that may include native
OpenGL, legacy DOS applications, Microsoft Office Native,
Computer Aided Design (CAD) programs, Adobe tools, and
many other high-computing native applications that run as
an executable on windows can be rendered and controlled
via the device connect platform. In FIG. 13, a native
application 1304 depicts a native application for Windows
10 or 11. In this embodiment, a USBIP module 1307 can be



US 12,346,399 B2

29

used to handle all USB-related devices such as cameras and
microphones are interface with the controller server 1320.
With reference to FIGS. 12(a)-12(c) and specially the USB
Virtual Router 1200, the connectivity with USB Web Cam
Emulator 1308 is possible. Camera and audio from a con-
troller can be sent over to a virtual windows terminal 1304
and used as it was natively functioning.

The main requirement is loading as a Windows Service or
native application, the Mevia Legacy Controller Application
1306 that is in charge of converting Message.evt commands
from controllers shown in FIG. 11 to WM_* messages from
windows and use the Windows API system. The Windows
Messaging Router 1310 is in charge of mapping from
several controllers Windows-based messages located to one
or many windows machines or devise that comply with
Windows messaging. For example, a TAP message from
device connect platform may correspond to WM_CLOSE if
the “X” button is located at 100,100. Another event that can
be converted are mouse events, by converting touch events
at the phone to WM_MOUSEMOVE, x, y for example that
are received by the 1306 device and sent to a Windows
procedure via the SendMessage API interface. As sounds
and screen captures are taken, those are sent using the
Xllgrab interface from tools such as FFMPEG 1302,
observer that Puppeteer is no longer necessary as the main
objective is to render Windows native applications not
HTML-based applications. Web socket server 1300 is cre-
ated at IPAddress:8001/office for instance and that Web-
socket or Websocket Secured (WSS) traffic 1338 can then be
retrieved by Mevia App server 1322 and displayed via target
canvas 1325. Clearly, the controller server 1320 will process
all gestures from the grid 1330 for mouse emulation 1333
turned on and a keyboard 1335 for typing commands. As
shown in FIG. 13, a WebRTC peer mapper server 1305 can
also retrieve the WebSocket Server 1300 content.

Observe that a server and client computer are only defi-
nitions used by HTTP and other protocols, but in some cases
a server could be a single purpose computer and the client
could be a cloud-based system. Hence, CPU, memory size,
number of clients are not limitations for defining a sever and
a client.

As shown WebSocket routing is then needed by the device
connect platform to determine what Application IDS and
what UUIDs are mapped to what particular destination, if
those applications are executing a user’s session, switching
from application to application will required just updating
the target canvas 1325 or target div that a player such as
jsMPEG. For example, a user might have run Office in one
particular server and may run Skype in another server, or
both could run in the same server 1315. However, a user may
switch from Office to Skype by simply switching URLs and
reloading the player being displayed at the player 1322.
Controller and Smart Television Identification Using Con-
textual Awareness in the Device Connect Platform

Thus far, we have presented the use of a QR code to map
a particular device connect platform application with a
controller and interact with different Mevia applications.
However, FIG. 14 shows how the asynchronous nature of
streaming can be taking advantage of and quickly determine
which smart television is in use and how to control it.
Assume that Adaptive HLS streams are used by an M3US8
streamer 1410 and 1420 shows a sequence of transport
streams as defined by the HTTP Live Streaming standard,
were stream0-4 to stream0-11.ts 1410 are part of a stream
and StreamO.ts to Stream7.ts are part of another stream,
which one could be at 700 Kbps and another one at 2 Mbps.
Such streamer can also be implemented by MPEG DASH

10

15

20

25

30

35

40

45

50

55

60

65

30

segmenter can also be used with MPD (Media Presentation
Document) that include a set of segments and use audio/
mp4, video/mp4, “AdaptationSet” entries that are part of the
MPD’s XML manifest. For cross-correlation purposes,
M3US8 or MPEG DASH streamer 1410 and 1420 are cross-
correlated highly as they come from the same stream and are
synchronized. However, in the log file 1405, a system can
narrow down what is being downloaded, when, and by who.
For example, IP_clientO obtains Stream4.ts while IP_client2
is processing Stream(-11.ts. all depends on the player in use.
Hence by inspection, we know that stream4-.ts and stream0-
5.ts are mapped to IP_clientO and IP_client] respectively.
Hence, if a mobile device can present images with a higher
cross-correlation to Stream4.ts 1430, it can be concluded
that a device is then using IP_Client0 and that UserAgent
information mapped to that particular location can be easily
identified. This technique is useful as it is designed to
replace the QR code and map location to particular device or
smart television where the user interface can now be con-
trolled. Additionally, other methods of triangulation could be
used to further narrow the proper television set in use, for
example location fingerprinting, ultra-wideband positioning,
or others known in the art to distinguish multiple TVs with
the same content. In operating systems such as Android, the
class android.core.uwb can be instantiated to obtain posi-
tioning information, and locally accessible via the webkit
application. An UWB service and listen to TCP port 4444,
and webkit can retrieve via http or https://localhost:4444/
uwb, UWB values corresponding to the AirTags or UWB
Tokens around the device. In this particular implementation,
the androidx.core.uwb instantiates UwbClientSessionScope
as wel as the UwbManager interfaces to make RangingMea-
surements and detect the proper TV client that is being
controlled or identified with the proper stream. In this
particular case, IP_Clientl is also associated with UWB_1,
whereas IP_client2 is also associated with UWB_2. Simi-
larly, iOS Devices as iPhone by creating and application
using NINearbyAccessoryConfiguration and obtaining a
device “session(_:didGenerateShareableConfigurationData:
for:). Hence, similarly to what is presented for android, an
application can integrate either android.core.uwb or NINear-
byAccesoryConfiguration or NINearbyPeerConfiguration
interfaces to detect TVs or displays in proximity, and further
isolate the device to be controller, even providing visual
feedback of the position of the TV that needs to be con-
trolled. This proximity location information is sent to the
MeviaVerse system for processing, either by itself or in
combination with QRCode, video images capture forms the
TV set. In that way, a proper discernment of what TVs are
controlled by the MEVIA controller are available can be
presented, even with a mapping as shown in FIG. 14(c).

Elements 1405 and 1415 are Smart TVs with an UWB
Airtags associated with the stream or session being broad-
casted 1410 and 1420. A mobile phone or AR headset at
1430 can display now TV1 and TV2 controllers, download
ApplD, UUID for each TVs by discerning each TV’s stream
being broadcasted (see FIG. 14(a)a and (b)) by also using
UWB’s airtags and the “nearby” location information of
each of the TVs. In some cases, scanning a QrCode may not
be necessary, as the UWB Addresses, and Images shown on
each TV will suffice to determine which TV is used and
controlled based on the relative distance and position cal-
culated from the UWB Signal.

This is a useful scenario in an airport, restaurant, bar, club,
where multiple Smart TVs are displaying either the same
feed or different feeds and QR Codes are not captured by the
device’s camera, instead UWB Airtag position information



US 12,346,399 B2

31

can be used by moving the device in the direction where the
distance to that TV is closer, or the location where the TV
is located and sending that information to the MeviaVerse
system for processing and allowing commands to be send to
the TV from the phone or the AR device.

In the case where only images area available, at a com-
puting device or phone a user can capture pictures and video
streaming from a particular smart television as it streams a
particular broadcast 1435, then the stream 1438 can be
found. The information can be captured with a message
(e.g., SMS, WhatsApp, iMessage, etc.) and then a client logs
1440 from HTTP Server that is being accessed from the
HTTP Live Stream. The cross correlation 1442 then exists in
between the information captured of N-frames, window
capturing stream, and a QR code 1444 is generated with a
certain time that is then displayed with authentication values
to the presumed smart television 1446 that has been located
or identified. The user then will proceed to scan the QR Code
and authenticate and validate that is the same source issuing
the request, and by a mistake another smart television has
been identified.

FIG. 15 shows the method in more detail, at step 1500
read access.log from all sources for smart TVs and at step
1505, an access.log from an HTTP server is identified with
all sources, where all smart televisions are retrieving the
streams being projected at any particular location. Log files
contain a user agent of the television, IP addresses of each
television source, and what was the latest stream retrieved
by the television. Hence, an IP address is mapped to a
particular transport stream (TS) segment. First it is assumed
that the mobile device is located at the same IP address or
subnetwork as the smart television which will narrow the
number of devices substantially. At step 1510, if there is less
than one source, either only one smart television is the
answer or if there none, there is no identification achieved,
as such a user will simply receive a timeout message or by
observing no feedback a user will understand that a QR
Code must be manually scanned from “All Sources” if it is
greater than one potential match, The system can also use
additional APIs, such as ip2location.com or other providers
to narrow the number of searches and streams according to
a potential IP address match aided by third party services.
Additionally, FIG. 15 can be combined with Ultra-Wide
Band (UWB) tags to provide additional positioning infor-
mation that the phone can send, as millimeter position
tracking by using Apple AirTags or other UWB tokens for
positioning and localization.

In the event that no matches are found, a brute force
approach can be applied and at step 1515 can start in a loop
and all sources from all streams will be required to be
matched.

Assuming that, a match of IP Address to smart television
has been achieved and the number of sources is small (e.g.
a NAT translate all requests at a Corporation) then from all
sources and all streams that have been recently retrieved at
step 1520 are compared in a cross-correlation computation
at step 1525 with all frames received by the mobile device
at step 1515, and the highest value is computed.

The highest 2D cross correlation in the number of frames
identifies the location of the particular index, I, on Ri at step
1525. At step 1530, The location is then associated with a
particular smart television that can be mapped using the
content router and a message.evt with “DisplayQR Com-
mand” is then issued with a generated QR code that can be
overlaid over the contents being streamed at a particular
time. Once the user visually sees the QR code display at the
smart display, a normal procedure will start and in other

10

15

20

25

30

35

40

45

50

55

60

65

32

situation authentication can be set to false at step 1535 and
simply gain control of the television without using a QR
code by receiving as a reply from the original message at
step 1540 (e.g., which may include an iMessage, SMS,
WhatsAPP message, and/or the like) where the user will
proceed to load the URL and control the television by
connecting to a particular controller associated with the
smart television.

WIFI Dongle for the Device Connect Platform

It is understood that not all televisions are compatible
with WebKit or other browsers and that some televisions are,
although compatible with HDMI inputs, are not smart tele-
visions. For those scenarios or for scenarios where more
control is required by the subscriber, FIG. 16(a) presents a
hardware alternative that generates QR codes and generates
the HDMI signal to display streams and also to connect to
the internet using WIFI. As shown, an LCD display is used
to display the QR code 1630 and inside the Dongle 1600, an
HDMI output 1603 is used to control an operating system
1625 (e.g., ChromiumOS), and loads mevia.js. mevia-3d.js,
mevia-rtc.js and any other mevia-related resource 1620 that
allows control via operating system 1625. The MeviaApp
1605 and AppUI 1610 contain the firmware required to load
operating system 1625 and verifying the provisioned “mevi-
app” (configuration pointing to a particular URL) is loaded
and is used to configure WIFI. In order to configure WIFI,
Bluetooth Low Energy protocol is used to “pass” the con-
figuration from a mobile device to the dongle. FIG. 16()
depicts the authentication and WIFI provisioning via BLE
methods as shown at step 1650, e.g., EValue or Encrypted
Value is a UUID with the Public Key and then generate
QRCode with the concatenation of the a “device connect
platform URL” (e.g. https:/device_connect_platform.com/
auth?Evalue=XYZ . . ”) with the EValue set at
“XYZ ..., this is displayed for 60 seconds and scan a QR
Code at step 1656 from a mobile phone and extract the
UUID to be activated at step 1660.

The dongle state machine will then replace the display
with “Waiting BLE WIFI” at step 1665 to notify the user that
BLE is being used to configure WIFI. Once the dongle WIFI
is activated, then it can be configured with the BLE protocol
and as soon as the dongle connects to the Internet and to the
device connect platform check if the UUID is activated, if
not, the dongle will be deactivated and the process will start
all over again.

There are multiple ways to load gestures.js and mevia.js
libraries, and how a controllers can be only controllers 1700
or only displays 1710 as shown in FIGS. 17(a)-17(c). Also,
a controller could also be a display and vice versa, which
means that a section of the screen can be used for touch and
a section for display as shown in client 1720 and client 1730.
In those cases, where a client is a controller and display,
different ports can be used to handle traffic of a combined
mevia-gesture.js can also be implemented and used. Finally,
the device connect platform allows two or more hybrid
controller-displays 1740, 1750, and other devices that are
only displays 1755.

Device Connect Platform in Cable and Satellite Systems

Another aspect of this disclosure is the ability to integrate
with cable satellite systems. As shown in FIG. 20, a stream
2000 is being displayed at a local store with a QR Code
2010. A keypad controller 2014, just as a standard remote
controller, is shown as part of mobile phone interface after
scanning. The controller 2014 can be connected to a pay-
ment portal 2015 that can then validate the use of the system
by verifying that a particular user is a paying customer of
service (e.g., like Sling television or Comcast). The device



US 12,346,399 B2

33

connect platform 2016 provides an interactive experience to
the end user, and a controller and the Meviapp server
generate HTML and JavaScript results that are then man-
aged from the keypad or other controller 2014. The headend
system 2020 can then retrieve using the caching server 2022
all generated HTML and JavaScript that is being rendered
together with music and/or video 2030 that can then multi-
casted to a cable television and satellite system that is being
retrieved by in several set top boxes 2040 (e.g., DOCSIS 2.0
or 3.0) or OTT Systems, and observed at stream 2000.
Hence, an interactive television experience is created and
any user with a phone can change channels for example,
load visual widgets, and overlay content generated from the
MEVIA Sever at the device connect platform to be broad-
casted to massive cable & satellite systems or OTT plat-
forms (such as Sling television or FUBO television) or
NextGenTV such as ATSC 3.0 standard broadcasting system
over-the-air. For example, the “Mevia Server” at 2016
generate a web-page with the animations, and interactions
that are generated from the controller 2014. The controller
interacts with the QR Code 2010 and see an image at 200
that is projected and multicast devices at 2025 as well as
unicast devices at 2040, retrieve content from the caching
server at 2022 that renders and broadcasts the resulting web
pages with HTMO and JavaScript at 2018. In some embodi-
ments, the music and video at 2030 can be added or retrieved
by the caching unit as presented in the *074 patent, as shown
in FIG. 14, HLS streams at 1410 and 1420 are in m3u8
format

Other controllers such as games, video interfaces and
other can be attached and a novel broadcasting system,
powered by the device connect platform.

Clearly, a user can interact with content in the device
connect platform and that content be combined with music
channels. As shown in FIG. 20, music channels 2030 could
work as background music that is distributed and assets
created in the caching unit. For instance, users may play a
game (e.g., PACMAN) for ten to fifteen minutes, and sound
bites from the game can be mixed with songs stored at music
channels 2030 as well as integrate user’s comments and text
that can be overlaid as part of CSS style “Absolute” and
using translucent <divs> that appear at different positions of
the game. Also, using the FIG. 12(c) system, a “Mevia App
server Display” could be composed of dialogs with multiple
people in a video conferencing call or any HTML from other
web applications, and any other web application that can
interact with a user or multiple users. For example, a user
may decide to draw an NFT and store the process of drawing
all the paths from an initial x1, y1 position vector to another
x2, y2 position vector, and all the steps to draw a particular
figure. The images and all streaming parts from the HTML
or canvas plus HTML are stored as part of the caching
system that generates screens from the HTML that is ready
to be multicast or streamed to a cable operator. Hence, the
device connect platform contents become that the back-
ground for the music being broadcasted that enhance or can
decorate the ambience for a museum, coffee shop, or any
other location.

Content Routing in the Device Connect Platform

Thus far several routing systems mostly related to QR
code mappings, WebSockets and WebRTC routings, and
well as Windows device messaging have been disclosed.
However, content routing will be explained in more details
in the section, content routing is a key feature of the device
connect platform and FIG. 21 depicts how multiple appli-
cations with multiple UUIDs and controllers are properly
routed to the respective Mevia application.

10

15

20

25

30

35

40

45

50

55

60

65

34

In the device connect platform, each application has an
Application Identifier (ApplD) and a user generates a UUID
2180 when interacts with a particular application, at the
same time each controller is mapped to a QrUrl that is stored
in the content routing table. In some cases, the content router
may require authentication 2165 and the previous applica-
tion ID is also stored, or the sequence or previous applica-
tion identifiers is stored to PrevAppID field 2168 to be able
to return to a previous application in the device connect
platform session. Also, a current controller value 2170 is
kept for the type of controller currently in use. The first
message that a controller receives per initialization is “init-
Controller” 2124, the initController command sets the
resources, and parameters that are required for a particular
user. The controller may generate gestures 2134 or a keypad,
or upon pressing certain events might generate Command
Macro 2140 or gestures (as a Hitachi Magic Wand device).
A gesture from a “wand device” is a 3D accelerator read that
is translated to UP, DOWN, SWIPE LEFT, SWIPE RIGHT
commands.

A content router will be able to manage thousands of
commands and events (See FIG. 21), from touch 2120 to
audio and video 2130. The content queue 2118 receives
packets that carry out information about the Application
Identifier of a target, the UUID generated by the device
connect platform for a particular user, and the message.evt
with message payload 2114. The message payload is not
analyzed by the Content Queue which can be implemented
using a HashMap or a NoSQL database, a Linked List. The
Load Balancer 2155 receives values such as Bandwidth,
Load per App, and QoS 2150 and can be adjusted to
determine when to process and how to process the Content
Queue. Once the Content Queue selects a packet to be
processed, it is passed to an Application Mapper 2142, the
application mapper is in charge of determining whether a
particular command has to be converted to a JavaScript
macro converter 2144, or if is an “Exit” command that
require controller reinitialization 2146. As an example, the
system can include that a “Long Tap” as the universal “ESC”
command, that means exit the device connect platform
Application. As such the Application Mapper 2142 can be
translated to draw a particular screen into a canvas 2140 or
play a particular audio stream as a notification buzzer at
ApplD2 with UUID2 2105, or the application mapper may
send an evt.mousestart x, y, Z 2110 to mevia app UUIDI1
with AppID1 at 2100. In another variation, the application
mapper will send a jQuery macro to UUID4 and AppID1
with the JavaScript “$(‘#slider”).next( );” that is then “evalu-
ated” or using the eval command at the UUID3 with APPID2
WebSocket, or simply send a command with
message.evt="SwipeRight” with message.evt.KeyB=<ctrl>
2108 to the application AppID3 with UUID3 2112.

A content queue system and controllers is accessible via
QrUrl1 to QrUrl4 (QR Code’s Universal Resource Locator)
in this example and each controller can include any of the
controllers as shown in FIG. 10, at 1001, QrUrl1 is associ-
ated with a Game, Qrurl2 with NFT Lab, QrUrl3 is Video-
conferencing and QrUrl4 is a Door controller interface or
application. In essence, the content router is processing all
messages using SocketlO and can be implemented in
NodelS or other languages. For example, a Content Router
creates as group to join all messages for a particular App
Identifier with a UUID. To help illustrate, pseudocode may
define an event listener for a connection event on a Web-
Socket server. Further, when a new connection is estab-
lished, the callback function is executed with the connected
socket as an argument. Inside the callback, a pathID is



US 12,346,399 B2

35

obtained by calling getContentRouter with two arguments:
UUID and AppID. The socket then parses the incoming data
as JSON. It logs a message to the console indicating that
command ‘X,Y” has been received, including the extracted
data.evt and data.evt.x, data,evt.y properties from the parsed
data. Finally, the server broadcasts a message with the event
name “ComandXY” and the parsed data to all sockets in the
room are identified by pathID.

The socket.broadcast.to(pathld) from the SocketlO
library in NodeJS can be used to emit certain command to
a particular application ID as the Content Router has gen-
erated a pathld. The Content Queue on the other hand can be
implemented as a Hashmap with a Round Robin or Weighed
Round Robin access technique or using “Apache
ActiveMQ” or other techniques to handle great amounts of
messages from multiple sources. As the same time Kuber-
nettes and cloud-based approaches can be used to address
scalability issues both vertical as horizontal.

On FIGS. 22(a)-22(c), we present a data capturing system
that includes a nodejs application that services all commands
and sends commands to a version of MEVIA but instead of
being 2-dimensional now it can be 3-dimensional in nature.
As shown in FIG. 22(a), the first step is to handle, device
motion 2200 shows how a device can capture data from the
accelerometer and other instrumentations from the mobile
device, such that orientation, and motion can be captured
and fed into a deep learning algorithm,

20

36

For example, the training algorithms for gestures
is then as follows: X_train=[[0 . . . STEPS], [0 . . .
STEPS . ..]...] of N Samples. The objective is that the
value of “STEPS” are 200-300 steps and that can be nor-
malized to handle the same amount of samples and Y_Train
are of values chosen “Up”, “Down,” “Left,” and other
gestures that are being trained with N samples as shown in
FIG. 22(b). Once the weights or deep learning machine
converges as using 20 to 25 epochs, training converges at
94-97% accuracy, the machine can be saved to be used
locally at the phone 2218 as FIG. 22(c) and a second neural
network could be stored remote NN 2220, in one training
delays are zero and remote NN 2220 the values includes all
delays from network traffic. The objective is result 2225 that
will generate the proper messages that are now sent as
message.evt commands to the device connect platform.

FIG. 23 shows how then all gestures can handle can send
commands to the device connect platform application in
control, for example at (a) the hand will move from 2300 to
2312, by moving or waving a hand gesture over the air from
left to right, as swipe, At FIG. 23(a), the applications shown
by the device connect platform application would be “Mevia
App 1,” “Mevia App 2,” and “Mevia App 3.” By scanning
the QR code associated to the smart television 2315, the
commands issued from the mobile phone’s gestures 2300
are sent or issued to the web application loaded into the
device connect platform. Hence, the device connect platform

function handleOrientation(event) {
var absolute = event.absolute;
var alpha = event.alpha;
var beta = event.beta;
var gamma = event.gamma;

/ var interval = event.interval;
/ elapsed_o = elapsed__o + interval;
J if (elapsed__o>=delta_ t){

$(“.alpha”).text(“alpha (z axis, 0 to 360):  + alpha.toFixed(4));

$(“.beta”).text(“beta (x axis, —180 to 180): ” + beta.toFixed(4));

$(“.gamma”).text(“gamma (y axis, 90 to 90): ” + gamma.toFixed(4));

$(.absolute™).text(“absolute: » + absolute);
elapsed_o = 0;
/ }

function handleMotion(event) {
var acceleration = event.acceleration;

var accelerationIncludingGravity = event.accelerationIncludingGravity;

var rotationRate = event.rotationRate;
var interval = event.interval;
elapsed = elapsed + interval;

The events captured from 2205 are then stored locally into
mobile device 2206. The mobile device 2206 can be deliv-
ered via JSON commands to a service for training a neural
network at a server 2208 where they are first stored and
saved in Clean Data 2210, while map to a particular set of
commands. Those commands 2212 could be up, down, left,
right, draw a character, make a number. Each command is
stored for two to three seconds at a sampling rate of 16 ms
represents around 200 samples, which will be used for a
Long Short Term Memory training (LSTM) or other neural
networks or neural networks.

Once the accelerator data is saved as a JSON object 2214,
FIG. 22(b) presents the standard process of training that can
be done using Keras or other time training sequences,
observe that the training can be done using deta_t, and
accel_x, y, z values that can be consolidated from all the
elements captured from FIG. 22(a). The training sequences
can be divided into 70% used for training 2216 and 30%
used for testing 2217.

application can be controlled using gestures as shown in
movements 2300. In this example, a swipe right is issued
and the menu switches from Mevia App 3 to Game Appli-
cation 2312. As part of the device connect platform content
router, the commands can be converted from
message.evt="Swipe Right” to $(‘slider’).nexto. Once a
menu option is selected, a selection is done by another
gesture to load the game application. A tap gesture can be
issued to smart television 2310 and then the selected appli-
cation 2305 is loaded, and the game controller 2325 used
regularly is load to interact with the device connect platform
application as in this case is a game application.

FIG. 24 show how the MEVIA application is then
changed by adding a 3dmevia.js to handle Z-axis positioning
changes, for example a WebGL or ARKit application can
translate depth movements in addition to X-axis and Y-axis
movements. As a device connect platform application, the
messages.evt can also contain the structure with: message x,



US 12,346,399 B2

37

message.y, and message.z position and handle MeviaAccel-
erometer instances 2430. The accelerator and gyroscope
instance is common on JavaScript as part of the object
window.ondevicemotion, window.ondeviceorientation, or
window.onmozorientation as supported by iPhone, Firefox,
and Chrome browsers. Additionally, the 3Dmevia.js 2405
library contains the 3D positioning and accelerometer values
that can be used also in combination with a Camera LIDAR
sensor for positioning in AR/VR headsets (Augmented Real-
ity/Virtual Reality), mevia.js 2422 and other resources
stylesheets loaded by mevia.css 2424. This type of applica-
tion is then handled to interact with a 3D Canvas 2426, 2410
is also recipient of SocketlO messages that contain all
controller commands, additionally HREF (HTML Refer-
ence) and other web references in the web application are
converted to work on the device connect platform 2428. The
use of WebGL and 3D Renderings are useful for AR/VR
scenarios, where the mobile device or terminal is an AR/VR
Headset (e.g. Vision OS, MetaQuest, Vivero, others), or
mobile phone with Augmented Reality (AR) using a phone’s
camera such as iOS or Android.

FIG. 25 presents the steps necessary to training the
gestures in 2D or 3D systems, at start at all initializations of
authentication using gesture at 2500, by loading the neural
network (e.g., LSTM) to train with more information. The
Training Data at 2510 interacts with 2505 with is the training
of those gestures with the accelerometer’s information from
the device, called “Accel Data,” once training is completed
after several iterations of training, the neural network can be
tested with a subset of training data, or “Test Data” as shown
at 2515. Further, once the validation and training correlation
is completed at 2520 with a desired accuracy, all neural
network weights are saved and the resulting Neural Network
can be used as part of detecting “swipe right”, “tap,” or even
train a “game controller” using gesture information as
shown in FIG. 23 For instance, upon capturing a sequence
of samples for swipe right or swipe left gesture as shown in
FIG. 22 at 2214. The element at 2510 uses the device
accelerometer data (Accel Data) that is loaded with multiple
with “Swipe right” training values or the training informa-
tion for “swipe right or left.” The sequence of values that
may include time, x, y, 7z, coordinates, or even accel_x,
accel_y and accel_z values are used for training. Once
trained, the detection functionality shown in FIG. 23 2300,
2312 “swipe right or left,” can be used to move the position
or cursor on the screen an issue message.evt commands to
the Mevia App, 2310. The saved Neural Network (NN) or
LSTM once trained can recognize gestures as depicted in
FIG. 22 either by saving downloading the NN into the
device or by processing the NN as part of the Mevia.js by
receiving SocketlOMessages or by processing the requests
via an HTTP GET or POST Request from the mobile device
or AR headset.

FIG. 26 is a flow diagram generally illustrating method
2600 for enabling a user to control and interact with content
on a computing device using a browser interface on another
computing device, according to the principles of the present
disclosure. At 2602, the method 2600 generates a first
message for a first browser executed on a first computing
device, where the first message includes instructions that in
response to being executed by the first browser causes a
representation of an interface of a physical user input device
to be displayed by the first browser.

At 2604, provides the first message to the first browser
(e.g. Web Page on Smart TV).

At 2606, the method 2600 generates a second message for
a second browser executed on a second computing device,

25

30

40

45

65

38

where the second message includes instructions that when
executed by the second browser enables user interaction
with content provided by the second browser in responsive
to input from the representation of the interface of the
physical user input device displayed by the first browser.
The physical user input device is configured to interact with
the content provided by the second browser. (E.g. Web Page
with controller displayed at mobile device)

At 2608, the method 2600 provides the second message to
the second browser and create an interaction from first
browser to the second browser (e.g. Command from con-
troller to first browser’s web page and responses).

ACRONYMS

IP: Internet Protocol

AAC: Advanced Audio Encoding

CDN: Content Delivery Network

UUID: Unique Universal Identifier

BLE: Bluetooth Low Energy

CABSAT: Cable and Satellite systems

OTT: Over-the-Top Platforms

SocketIO: JavaScript library used to manage WebSockets.
MP3: MPEG-2 Audio Layer III

OGG: Theora codec for audio

OGV: Theora codec for video

MPEG: Motion Pictures Expert Group
FFMPEG: Fast Forward MPEG

WebRTC: Web Real-time Communications
HLS: HTTP Live Streaming

TS: Transport Stream

EC2: Elastic Computing Class 2

VP8: Open video encoding developed by Google using LibVPX
SSH: Secure Socket Shell

RTMP: Real-time Messaging Protocol

WSS: WebSocket Secured Protocol

HTTP: Hypertext Transfer Protocol

HTTP GET: HTTP Method used to submit
data when data is posted a part of URL
HTTP POST: HTTP Method used to submit data
when data is part of the payload not the URL
HTML: Hypertext Markup Language

HLS: HTTP Live Streaming

LSTM: Long short-term memory

NAT: Network Address Translation

NFT: Non-Fungible Token

NN: Neural Network

RTP: Real-time Protocol

SIP: Session Initiation Protocol

URI: Universal Resource Identifier

URL: Universal Resource Locator

WLAN: Wireless Local Area Network or WiFi
OTT: Over-the-Top Streaming Platform
LAN: Local Area Network

PAN: Personal Area Network

WAN: Wireless Area Network

It is noted that various individual features of the inventive
processes and systems may be described only in one exem-
plary embodiment herein. The particular choice for descrip-
tion herein with regard to a single exemplary embodiment is
not to be taken as a limitation that the particular feature is
only applicable to the embodiment in which it is described.
All features described herein are equally applicable to,
additive, or interchangeable with any or all of the other
exemplary embodiments described herein and, in any com-
bination, or grouping or arrangement. In particular, use of a
single reference numeral herein to illustrate, define, or
describe a particular feature does not mean that the feature
cannot be associated or equated to another feature in another
drawing figure or description. Further, where two or more
reference numerals are used in the figures or in the drawings,
this should not be construed as being limited to only those



US 12,346,399 B2

39

embodiments or features, they are equally applicable to
similar features or not a reference numeral is used or another
reference numeral is omitted.
The foregoing description and accompanying drawings
illustrate the principles, exemplary embodiments, and
modes of operation of the systems, apparatuses, and meth-
ods. However, the systems, apparatuses, and methods should
not be construed as being limited to the particular embodi-
ments discussed above. Additional variations of the embodi-
ments discussed above will be appreciated by those skilled
in the art and the above-described embodiments should be
regarded as illustrative rather than restrictive. Accordingly,
it should be appreciated that variations to those embodi-
ments can be made by those skilled in the art without
departing from the scope of the systems, apparatuses, and
methods as defined by the following claims.
What is claimed is:
1. A method, comprising:
generating a first message for a first browser executed on
a first computing device, the first message including
instructions that in response to being executed by the
first browser causes a representation of an interface of
a physical user input device to be displayed by the first
browser;
providing the first message to the first browser;
generating a second message for a second browser
executed on a second computing device, the second
message including instructions that when executed by
the second browser enables user interaction with con-
tent provided by the second browser responsive to input
from the representation of the interface of the physical
user input device displayed by the first browser,
wherein the physical user input device is configured to
interact with the content provided by the second
browser;
providing the second message to the second browser;
receiving a third message from the first browser including
touch gesture data in response to user engagement with
the representation of the interface of the physical user
input device displayed by the first browser;

converting the touch gesture data to updates to the content
rendered or executed by the second browser;

updating the content rendered or executed by the second
browser based on the touch gesture data; and

providing a fourth message to the second browser, the
fourth message including the updates to the content
provided by the second browser.

2. The method of claim 1, further comprising:

receiving an identification message including application

identification data associated with a web application;
determining, based on the application identification data,
identification information of the physical user input
device used to interact with the web application; and
generating the instructions of the second message that
when executed causes the interface of the physical user
input device to be displayed on the first browser.

3. The method of claim 2, wherein the identification
information of the physical user input device indicates what
brand, type, model of the physical user input device.

4. The method of claim 2, wherein the identification
message is associated with a quick-response code.

5. The method of claim 2, wherein the application iden-
tification data includes information identifying a destination
server to receive any user interaction with the interface of
the physical user input device.

6. The method of claim 1, further comprising:

receiving a user selection of a web application; and

40

generating a third message for the first browser executing
on the first computing device, the third message includ-
ing instructions that when executed by the first browser
causes an alternative representation of the interface of

5 the physical user input device associated with the web

application to be displayed by the first browser.

7. The method of claim 1, wherein representation of the
interface of the physical user input device includes an entire
layout of the physical user input device.

10 8. The method of claim 1, wherein the instructions that in
response to being executed by the first browser causes the
representation of the interface of the physical user input
device to be displayed by the first browser includes at least
one JavaScript library.

15 9. The method of claim 1, wherein the instructions that
when executed by the second browser enables user interac-
tion with content provided by the second browser includes
at least one JavaScript file.

10. A system comprising:

20 at least one processor circuit; and

at least one memory that stores instructions to be executed

by the at least one processor circuit, the instructions
configured to perform operations that comprise:
generating a first message for a first browser executed on

25 a first computing device, the first message including

instructions that in response to being executed by the
first browser causes a representation of an interface of
a physical user input device to be displayed by the first
browser;

30  providing the first message to the first browser;

generating a second message for a second browser

executed on a second computing device, the second
message including instructions that when executed by
the second browser enables user interaction with con-

35 tent provided by the second browser responsive to input

from the representation of the interface of the physical
user input device displayed by the first browser,
wherein the physical user input device is configured to
interact with the content provided by the second

40 browser;

providing the second message to the second browser;

receiving a third message from the first browser including

touch gesture data in response to user engagement with
the representation of the interface of the physical user

45 input device displayed by the first browser;

converting the touch gesture data to updates to the content

rendered or executed by the second browser;
updating the content rendered or executed by the second
browser based on the touch gesture data; and

50  providing a fourth message to the second browser, the

fourth message including the updates to the content
provided by the second browser.

11. The system of claim 10, wherein the instructions are
further configured to perform operations that comprise:

55 receiving an identification message including application

identification data associated with a web application;
determining, based on the application identification data,

identification information of the physical user input

device used to interact with the web application; and

60  generating the instructions of the second message that

when executed causes the interface of the physical user
input device to be displayed on the first browser.

12. The system of claim 11, wherein the identification
information of the physical user input device indicates what

65 brand, type, model of the physical user input device.

13. The system of claim 11, wherein the identification
message is associated with a quick-response code.



US 12,346,399 B2

41

14. The system of claim 11, wherein the application
identification data includes information identifying a desti-
nation server to receive any user interaction with the inter-
face of the physical user input device.

15. The system of claim 10, wherein the instructions are
further configured to perform operations that comprise:

receiving a user selection of a web application; and

generating a third message for the first browser executing
on the first computing device, the third message includ-
ing instructions that when executed by the first browser
causes an alternative representation of the interface of
the physical user input device associated with the web
application to be displayed by the first browser.

16. The system of claim 10, wherein representation of the
interface of the physical user input device includes an entire
layout of the physical user input device.

17. The system of claim 10, wherein the instructions that
in response to being executed by the first browser causes the
representation of the interface of the physical user input
device to be displayed by the first browser includes at least
one JavaScript library.

18. A non-transitory computer-readable storage medium
having program instructions recorded thereon that, when
executed by at least one processing circuit of a computing
device, perform a method, comprising:

generating a first message for a first browser executed on

a first computing device, the first message including
instructions that in response to being executed by the

10

15

20

25

42

first browser causes a representation of an interface of
a physical user input device to be displayed by the first
browser;
providing the first message to the first browser;
generating a second message for a second browser
executed on a second computing device, the second
message including instructions that when executed by
the second browser enables user interaction with con-
tent provided by the second browser responsive to input
from the representation of the interface of the physical
user input device displayed by the first browser,
wherein the physical user input device is configured to
interact with the content provided by the second
browser;
providing the second message to the second browser;
receiving a third message from the first browser including
touch gesture data in response to user engagement with
the representation of the interface of the physical user
input device displayed by the first browser;
converting the touch gesture data to updates to the content
rendered or executed by the second browser;
updating the content rendered or executed by the second
browser based on the touch gesture data; and
providing a fourth message to the second browser, the
fourth message including the updates to the content
provided by the second browser.

#* #* #* #* #*



